Terahertz (THz) imaging techniques are attractive for a wide range of applications, such as non-destructive testing, biological sensing, and security imaging. We investigate practical issues in THz imaging systems based on a solid immersion lens (SIL). The system stability in terms of longitudinal misalignment of the SIL is experimentally verified by showing that the diffraction-limited sub-wavelength beam size (0.
View Article and Find Full Text PDFIn this report, a screening-engineered carbon nanotube (CNT) network/MoS/metal heterojunction vertical field effect transistor (CNT-VFET) is fabricated for an efficient gate modulation independent of the drain voltage. The gate field in the CNT-VFET transports through the empty space of the CNT network without any screening layer and directly modulates the MoS semiconductor energy band, while the gate field from the Si back gate is mostly screened by the graphene layer. Consequently, the on/off ratio of CNT-VFET maintained 10 in overall drain voltages, which is 10 times and 1000 times higher than that of the graphene (Gr) VFET at = 0.
View Article and Find Full Text PDFA terahertz continuous wave system is demonstrated for thickness measurement using Gouy phase shift interferometry without frequency sweep. One arm of the interferometer utilizes a collimated wave as a reference, and the other arm applies a focused beam for sample investigation. When the optical path difference (OPD) of the arms is zero, a destructive interference pattern is produced.
View Article and Find Full Text PDFPhotonic devices that exhibit all-optically reconfigurable polarization dependence with a large dynamic range would be highly attractive for active polarization control. Here, we report that strongly polarization-selective nonlinear optomechanical interactions emerge in subwavelength waveguides. By using full-vectorial finite element analysis, we find, at certain core ellipticities (or aspect ratios), that the forward simulated light scattering mediated by a specific acoustic resonance mode is eliminated for one polarization mode.
View Article and Find Full Text PDFRectifiers have been used to detect electromagnetic waves with very low photon energies. In these rectifying devices, different methods have been utilized, such as adjusting the bandgap and the doping profile, or utilizing the contact potential of the metal-semiconductor junction to produce current flow depending on the direction of the electric field. In this paper, it is shown that the asymmetric application of nano-electrodes to a metal-semiconductor-metal (MSM) structure can produce such rectification characteristics, and a terahertz (THz) wave detector based on the nano-MSM structure is proposed.
View Article and Find Full Text PDFAlthough many studies have been carried out on the doping of transition metal dichalcogenides (TMDCs), introducing controllable amounts of dopants into a TMD lattice is still insufficient. Here we demonstrate doping controlled TMDC growth by the replacement of selenium with phosphorus during the synthesis of the monolayer WSe2. The phosphorus doping density was precisely controlled by fine adjustment of the amount of P2O5 dopant powder along the pre-annealing time.
View Article and Find Full Text PDFConcepts of non-volatile memory to replace conventional flash memory have suffered from low material reliability and high off-state current, and the use of a thick, rigid blocking oxide layer in flash memory further restricts vertical scale-up. Here, we report a two-terminal floating gate memory, tunnelling random access memory fabricated by a monolayer MoS2/h-BN/monolayer graphene vertical stack. Our device uses a two-terminal electrode for current flow in the MoS2 channel and simultaneously for charging and discharging the graphene floating gate through the h-BN tunnelling barrier.
View Article and Find Full Text PDFPhotoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well.
View Article and Find Full Text PDFAn active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.
View Article and Find Full Text PDFIn this study, inspired by the frequency-modulated continuous-wave (FMCW) method, an operation scheme of continuous-wave (CW) terahertz (THz) homodyne system is proposed and evaluated. For this purpose, we utilized the fast and stable wavelength tuning characteristics of a dual-mode laser (DML) as a beating source. Using the frequency-modulated THz waves generated by DML, a cost-effective and robust operation of CW THz system to be applicable to the measurements of thickness or refractive index of a sample is demonstrated.
View Article and Find Full Text PDFWe demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm².
View Article and Find Full Text PDFHybrid characteristics of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs) appear at a combined structure of a thin silver (Ag) layer and silver core/silica shell nanocubes (AgNC@SiO(2)s) in the Kretschmann configuration, because the resonant condition of PSPs on the thin Ag layer is significantly modified by LSPs of the AgNC@SiO(2)s. We investigate theoretically and experimentally that due to the hybrid property, the slope and position of the minimum reflectance band can be controlled on a graph of incident angle versus wavelength of reflected light, by changing structural parameters. The hybrid properties of PSPs and LSPs have a potential to simultaneously detect surface plasmon resonance signals and fluorescence images.
View Article and Find Full Text PDFThere has been a significant interest on plasmonics in a metallic structure with very narrow gaps for studies of nanophotonics. However, little attention has been paid to the behavior of surface plasmons (SPs) in quasi-continuous metallic structures. This study observes and analyzes intermediate characteristics between propagating SPs (PSPs) and localized SPs (LSPs) in a quasi-continuous metallic monolayer of core-shell nanocubes.
View Article and Find Full Text PDFA novel buried photomixer for integrated photonic terahertz devices is proposed. The active region of the mesa-structure InGaAs photomixer is buried in an InP layer grown by metalorganic chemical vapor deposition (MOCVD) to improve heat dissipation, which is an important problem for terahertz photomixers. The proposed photomixer shows good thermal properties compared to a conventional planar-type photomixer.
View Article and Find Full Text PDFWe propose a novel metal-insulator-metal (MIM) waveguide mode transition scheme by the use of the abrupt junction of MIM plasmonic waveguide. Power coupling between anti-symmetric plasmonic mode and fundamental photonic mode can be easily done by reflection at the waveguide junction with an oblique MIM mode incidence due to the field intersection between those modes. With numerical simulation we find that mode conversion efficiency can be obtained up to 60% for single junction geometry, and it can be further increased up to 82% with the suppression of non-transited mode by adapting Bragg grating structure composed of periodical arranges of MIM junctions.
View Article and Find Full Text PDFWe investigate the finite power Airy beams generated by finite extent input beams such as a Gaussian beam, a uniform beam of finite extent, and an inverse Gaussian beam. Each has different propagation behavior: A finite Airy beam generated by a uniform input beam keeps its Airy profile much longer than the conventional finite Airy beam. Also, an inverse Gaussian beam generates a finite Airy beam with a good bent focusing in free space.
View Article and Find Full Text PDFWe propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase.
View Article and Find Full Text PDFWe present a method for exciting surface plasmon polaritons (SPPs) caused by a magnetic field component perpendicular to the direction of slit. The excitation mechanism is based on the spatially oscillating induced current along the edges of the slit under obliquely incident electromagnetic waves. Our finding distinguishes itself from previous mechanisms based on transverse electric fields and unveils the missing point of the SPP-excitation problem in a nanoslit.
View Article and Find Full Text PDFA method for depositing silver nanoparticles in a pre-patterned trench by site-selective synthesis is described. In the trench patterns with various shapes, silver nanoparticles can be selectively nucleated and grown only on polyvinylpyrrolidone (PVP) domains by attraction (or repulsion) between silver ions and the hydrophilic PVP island domains in a silica matrix of the trench (or the hydrophobic fluorosilane layer). Regarding the silver nanoparticles in the trench, localized surface plasmon resonance (LSPR) could be excited by obliquely incident light, reradiating the enhanced electromagnetic field in the far- and near-fields.
View Article and Find Full Text PDFA polarization-dependent switchable plasmonic beaming structure composed of metallic hole surrounded by double spiral dielectric gratings is proposed. The main mechanism of the proposed structure is based on the angular momentum change of surface plasmon caused by the spiral geometry. On- and off-states of the proposed device are determined by the condition whether the rotating direction of incident polarization is the same as or opposite of the direction of the spiral rotations.
View Article and Find Full Text PDFWe propose a compact nano-metallic structure for enhancing and concentrating far-field transmission: a faced folded nano-rod (FFR) unit, composed of two folded metallic nano-rods placed facing each other in an aperture. By analyzing local charge, field, and current distributions in the FFR unit using three-dimensional finite difference time domain (FDTD) calculation results, we show that although charge and field configurations become somewhat different depending on the polarization states of the illumination, similar current flows are formed in the FFR unit, which entail similar far-field radiation patterns regardless of the polarization states, making the FFR unit a quasi-polarization-insensitive field concentrator. We demonstrate this functionality of the FFR unit experimentally using the holographic microscopy which provides us a three-dimensional map of the complex wavefronts of optical fields emanating from the FFR unit.
View Article and Find Full Text PDFUnder the restrictions that the mapping functions of transformation are defined in extended two-dimensional (2D) forms and the incident waves are 2D propagating fields, the conditions for non-reflecting boundaries in a finite-embedded coordinate transformation metamaterial slab are derived. By exploring several examples, including some reported in the literatures and some novel ones developed in this study, we show that our approach can be efficiently used to determine the condition for a finite-embedded coordinate transformed metamaterial slab to be non-reflecting.
View Article and Find Full Text PDFA metal slit array arranged along a semicircular surface achieving subwavelength optical beam focusing along the lateral direction is proposed. Taking into consideration surface plasmon polaritons that pass through a metal slit array, we design the array with a curvature. By use of a genetic algorithm, the size of the metal slit and the corresponding curvature are to be determined.
View Article and Find Full Text PDFWe present comprehensive case studies on trapping of light in plasmonic waveguides, including the metal-insulator-metal (MIM) and insulator-metal-insulator (IMI) waveguides. Due to the geometrical symmetry, the guided modes are classified into the anti-symmetric and symmetric modes. For the lossless case, where the relative electric permittivity of metal (epsilon(m)) and dielectric (epsilon(d)) are purely real, we define rho as rho = -epsilon(m)/epsilon(d).
View Article and Find Full Text PDFA simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect.
View Article and Find Full Text PDF