Publications by authors named "Il-Ha Lee"

One of the key pathophysiologies of H5N1 infection is excessive proinflammatory cytokine response (cytokine storm) characterized by increases in IFN-β, TNF-α, IL-6, CXCL10, CCL4, CCL2 and CCL5 in the respiratory tract. H5N1-induced cytokine release can occur via an infection-independent mechanism, however, detail of the cellular signaling involved is poorly understood. To elucidate this mechanism, the effect of inactivated (β-propiolactone-treated) H5N1 on the cytokine and chemokine mRNA expression in 16HBE14o- human respiratory epithelial cells was investigated.

View Article and Find Full Text PDF

Traditionally, proteins are considered to perform a single role, be it as an enzyme, a channel, a transporter or as a structural scaffold. However, recent studies have described moonlighting proteins that perform distinct and independent functions; for example, TRPM7 is both an ion channel and a kinase. ZnT-1 is a member of the Carrier Diffusion Facilitator family that is expressed throughout the phylogenetic tree from bacteria to humans.

View Article and Find Full Text PDF

The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current.

View Article and Find Full Text PDF

ZnT-1 is a Cation Diffusion Facilitator (CDF) family protein, and is present throughout the phylogenetic tree from bacteria to humans. Since its original cloning in 1995, ZnT-1 has been considered to be the major Zn(2+) extruding transporter, based on its ability to protect cells against zinc toxicity. However, experimental evidence for ZnT-1 induced Zn(2+) extrusion was not convincing.

View Article and Find Full Text PDF

Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth.

View Article and Find Full Text PDF

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na(+) absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC.

View Article and Find Full Text PDF

By using carbon-free inorganic atomic layer involving heat treatment from 150 to 300 °C, environmentally stable and permanent modulation of the electronic and electrical properties of single-walled carbon nanotubes (SWCNTs) from p-type to ambi-polar and possibly to n-type has been demonstrated. At low heat treatment temperature, a strong p-doping effect from Au(3+) ions to CNTs due to a large difference in reduction potential between them is dominant. However at higher temperature, the gold species are thermally reduced, and thermally induced CNT-Cl finally occurs by the decomposition reaction of AuCl(3).

View Article and Find Full Text PDF

Despite the availability of large-area graphene synthesized by chemical vapor deposition (CVD), the control of a uniform monolayer graphene remained challenging. Here, we report a method of acquiring monolayer graphene by laser irradiation. The accumulation of heat on graphene by absorbing light, followed by oxidative burning of upper graphene layers, which strongly relies on the wavelength of light and optical parameters of the substrate, was in situ measured by the G-band shift in Raman spectroscopy.

View Article and Find Full Text PDF

The mechanism of doping carbon nanotubes (CNTs) with a salt solution was investigated using the density functional theory. We propose that the anion-CNT complex is a key component in doping CNTs. Although the cations play an important role in ionizing CNTs as an intermediate precursor, the ionized CNTs are neutralized further by forming a stable anion-CNT complex as a final reactant.

View Article and Find Full Text PDF

It has recently been shown that the epithelial Na(+) channel (ENaC) is compartmentalized in caveolin-rich lipid rafts and that pharmacological depletion of membrane cholesterol, which disrupts lipid raft formation, decreases the activity of ENaC. Here we show, for the first time, that a signature protein of caveolae, caveolin-1 (Cav-1), down-regulates the activity and membrane surface expression of ENaC. Physical interaction between ENaC and Cav-1 was also confirmed in a coimmunoprecipitation assay.

View Article and Find Full Text PDF

A CMOS-like inverter was integrated by using ambipolar carbon nanotube (CNT) transistors without doping. The ambipolar CNT transistors automatically configure themselves to play a role as an n-type or p-type transistor in a logic circuit depending on the supply voltage (V(DD)) and ground. A NOR (NAND) gate is adaptively converted to a NAND (NOR) gate.

View Article and Find Full Text PDF

Various viologens have been used to control the doping of single-walled carbon nanotubes (SWCNTs) via direct redox reactions. A new method of extracting neutral viologen (V(0)) was introduced using a biphase of toluene and viologen-dissolved water. A reductant of sodium borohydride transferred positively charged viologen (V(2+)) into V(0), where the reduced V(0) was separated into toluene with high separation yield.

View Article and Find Full Text PDF

1. The epithelial sodium channel (ENaC) is tightly regulated by hormonal and humoral factors, including cytosolic ion concentration and glucocorticoid and mineralocorticoid hormones. Many of these regulators of ENaC control its activity by regulating its surface expression via neural precursor cell-expressed developmentally downregulated (gene 4) protein (Nedd4-2).

View Article and Find Full Text PDF
Article Synopsis
  • The epithelial sodium channel (ENaC) is crucial for sodium absorption, fluid balance, and blood pressure regulation, and its activity is influenced by insulin.
  • In this study, researchers found that the kinases Akt and Sgk enhance ENaC activity when overexpressed, whereas a dominant-negative Akt variant decreases its activity.
  • Additionally, the inhibition of these kinases impairs both the basal and insulin-stimulated ENaC activity, while their overexpression counters the inhibitory effects of a protein called Nedd4-2 on ENaC function.
View Article and Find Full Text PDF

Regulation of the epithelial sodium channel (ENaC) is highly complex and may involve several aldosterone-induced regulatory proteins. The N-Myc downstream-regulated gene 2 (NDRG2) has been identified as an early aldosterone-induced gene. Therefore, we hypothesized that NDRG2 may affect ENaC function.

View Article and Find Full Text PDF

The two-kringle domain of tissue-type plasminogen activator (t-PA) has previously been shown to contain anti-angiogenesis activity. In this study, we explored the potential in vivo anti-tumor effects of the recombinant kringle domain (TK1-2) of human t-PA. Anti-tumor effects of purified Pichia-driven TK1-2 were examined in nude mice models by subcutaneous implantation of human lung (A-549) and colon (DLD-1, HCT-116) cancer cell lines.

View Article and Find Full Text PDF

Urokinase plasminogen activator (uPA) belongs to a family of proteins that contains kringle domain and plays an important role in inflammation, tissue remodeling, angiogenesis, and tumor metastasis by pericellular plasminogen activation. Kringle domains of plasminogen have been shown to demonstrate anti-angiogenic and anti-tumor activities. Here, we report our investigation of the kringle domain of uPA for anti-angiogenic activity and a possible cellular mechanism of action.

View Article and Find Full Text PDF

Change in fibrin stabilizing activity of factor XIII A subunit (FXIII-A) caused by a specific mutation, Val34Leu, is recently implicated to incidences of pathophysiology of thrombosis. In an effort to understand the effect of Val34Leu on enhanced catalytic role of FXIII-A, wild type human factor XIII A (HFXIII-A) and mutant HFXIII-A: HFXIII-A (V34L), HFXIII-A (V35L) and HFXIII-A (V34L/V35L) cDNA were expressed in E.coli system where the purified recombinant FXIII-A (gammaFXIII-A) showed a similar specific transglutaminase activity comparable to the human native FXIII-A from platelet.

View Article and Find Full Text PDF

Immunohistochemistry for haptoglobin (Hp) in the postischemic hippocampus demonstrated an immunoreactivity visible one day after reperfusion and continuing to increase until 14 days after ischemia. The immunoreactivity was most prominent in CA1 and the dentate hilar region, especially in cells with astroglial morphology. Double immunofluorescence histochemistry confirmed colocalization of the Hp and glial fibrillary acidic protein.

View Article and Find Full Text PDF

Several acute-phase plasma proteins, including haptoglobin (Hp), are induced in the liver in response to inflammation. Recently, we found that Hp gene expression is up-regulated by all-trans-retinoic acid (ATRA) in the extrahepatic monocytic cell line, THP-1. To investigate the molecular mechanism underlying ATRA-induced Hp gene expression, we analyzed the induction of transcription factor CCAAT/enhancer-binding protein (C/EBP) isoforms in ATRA-stimulated THP-1 cells and their binding to the Hp promoter.

View Article and Find Full Text PDF