Publications by authors named "Il Memming Park"

Function and dysfunctions of neural systems are tied to the temporal evolution of neural states. The current limitations in showing their causal role stem largely from the absence of tools capable of probing the brain's internal state in real-time. This gap restricts the scope of experiments vital for advancing both fundamental and clinical neuroscience.

View Article and Find Full Text PDF

Spike train signals recorded from a large population of neurons often exhibit low-dimensional spatio-temporal structure and modeled as conditional Poisson observations. The low-dimensional signals that capture internal brain states are useful for building brain machine interfaces and understanding the neural computation underlying meaningful behavior. We derive a practical upper bound to the signal-to-noise ratio (SNR) of inferred neural latent trajectories using Fisher information.

View Article and Find Full Text PDF

Continuous attractors offer a unique class of solutions for storing continuous-valued variables in recurrent system states for indefinitely long time intervals. Unfortunately, continuous attractors suffer from severe structural instability in general--they are destroyed by most infinitesimal changes of the dynamical law that defines them. This fragility limits their utility especially in biological systems as their recurrent dynamics are subject to constant perturbations.

View Article and Find Full Text PDF

Neural dynamical systems with stable attractor structures, such as point attractors and continuous attractors, are hypothesized to underlie meaningful temporal behavior that requires working memory. However, working memory may not support useful learning signals necessary to adapt to changes in the temporal structure of the environment. We show that in addition to the continuous attractors that are widely implicated, periodic and quasi-periodic attractors can also support learning arbitrarily long temporal relationships.

View Article and Find Full Text PDF

Latent variable models have become instrumental in computational neuroscience for reasoning about neural computation. This has fostered the development of powerful offline algorithms for extracting latent neural trajectories from neural recordings. However, despite the potential of real time alternatives to give immediate feedback to experimentalists, and enhance experimental design, they have received markedly less attention.

View Article and Find Full Text PDF

The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception, but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task performance distinct from sensory encoding by manipulating subjects' temporal evidence-weighting strategy during a direction discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques (one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT.

View Article and Find Full Text PDF

Brain asymmetry in the sensitivity to spectrotemporal modulation is an established functional feature that underlies the perception of speech and music. The left auditory cortex (ACx) is believed to specialize in processing fast temporal components of speech sounds, and the right ACx slower components. However, the circuit features and neural computations behind these lateralized spectrotemporal processes are poorly understood.

View Article and Find Full Text PDF

Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte Carlo, which enables flexible and accurate Bayesian joint filtering.

View Article and Find Full Text PDF

Gated recurrent units (GRUs) are specialized memory elements for building recurrent neural networks. Despite their incredible success on various tasks, including extracting dynamics underlying neural data, little is understood about the specific dynamics representable in a GRU network. As a result, it is both difficult to know a priori how successful a GRU network will perform on a given task, and also their capacity to mimic the underlying behavior of their biological counterparts.

View Article and Find Full Text PDF

Brain dynamics can exhibit narrow-band nonlinear oscillations and multistability. For a subset of disorders of consciousness and motor control, we hypothesized that some symptoms originate from the inability to spontaneously transition from one attractor to another. Using external perturbations, such as electrical pulses delivered by deep brain stimulation devices, it may be possible to induce such transition out of the pathological attractors.

View Article and Find Full Text PDF

Studies in visual, auditory, and somatosensory cortices have revealed that different cell types as well as neurons located in different laminae display distinct stimulus response profiles. The extent to which these layer and cell type-specific distinctions generalize to gustatory cortex (GC) remains unknown. In this study, we performed extracellular recordings in adult female mice to monitor the activity of putative pyramidal and inhibitory neurons located in deep and superficial layers of GC.

View Article and Find Full Text PDF

New technologies for recording the activity of large neural populations during complex behavior provide exciting opportunities for investigating the neural computations that underlie perception, cognition, and decision-making. Non-linear state space models provide an interpretable signal processing framework by combining an intuitive dynamical system with a probabilistic observation model, which can provide insights into neural dynamics, neural computation, and development of neural prosthetics and treatment through feedback control. This brings with it the challenge of learning both latent neural state and the underlying dynamical system because neither are known for neural systems .

View Article and Find Full Text PDF

For stimuli near perceptual threshold, the trial-by-trial activity of single neurons in many sensory areas is correlated with the animal's perceptual report. This phenomenon has often been attributed to feedforward readout of the neural activity by the downstream decision-making circuits. The interpretation of choice-correlated activity is quite ambiguous, but its meaning can be better understood in the light of population-wide correlations among sensory neurons.

View Article and Find Full Text PDF

In aquatic and terrestrial environments, odorants are dispersed by currents that create concentration distributions that are spatially and temporally complex. Animals navigating in a plume must therefore rely upon intermittent, and time-varying information to find the source. Navigation has typically been studied as a spatial information problem, with the aim of movement towards higher mean concentrations.

View Article and Find Full Text PDF

Manipulating the dynamics of neural systems through targeted stimulation is a frontier of research and clinical neuroscience; however, the control schemes considered for neural systems are mismatched for the unique needs of manipulating neural dynamics. An appropriate control method should respect the variability in neural systems, incorporating moment to moment "input" to the neural dynamics and behaving based on the current neural state, irrespective of the past trajectory. We propose such a controller under a nonlinear state-space feedback framework that steers one dynamical system to function as through it were another dynamical system entirely.

View Article and Find Full Text PDF

The mammalian visual system consists of several anatomically distinct areas, layers, and cell types. To understand the role of these subpopulations in visual information processing, we analyzed neural signals recorded from excitatory neurons from various anatomical and functional structures. For each of 186 mice, one of six genetically tagged cell types and one of six visual areas were targeted while the mouse was passively viewing various visual stimuli.

View Article and Find Full Text PDF
Article Synopsis
  • Viral vectors are essential tools in neuroscience for delivering genes and studying neural stem cells (NSCs) over developmental time.
  • Researchers face uncertainty about the likelihood of successful viral infections in NSCs, which limits their ability to target specific cell clusters effectively.
  • A new method is introduced that calculates the infection probability of NSCs, using data from a novel approach to label these cells, providing a valuable resource for other researchers in both basic and applied studies.
View Article and Find Full Text PDF

During perceptual decision-making, responses in the middle temporal (MT) and lateral intraparietal (LIP) areas appear to map onto theoretically defined quantities, with MT representing instantaneous motion evidence and LIP reflecting the accumulated evidence. However, several aspects of the transformation between the two areas have not been empirically tested. We therefore performed multistage systems identification analyses of the simultaneous activity of MT and LIP during individual decisions.

View Article and Find Full Text PDF

When governed by underlying low-dimensional dynamics, the interdependence of simultaneously recorded populations of neurons can be explained by a small number of shared factors, or a low-dimensional trajectory. Recovering these latent trajectories, particularly from single-trial population recordings, may help us understand the dynamics that drive neural computation. However, due to the biophysical constraints and noise in the spike trains, inferring trajectories from data is a challenging statistical problem in general.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

It has been suggested that the lateral intraparietal area (LIP) of macaques plays a fundamental role in sensorimotor decision-making. We examined the neural code in LIP at the level of individual spike trains using a statistical approach based on generalized linear models. We found that LIP responses reflected a combination of temporally overlapping task- and decision-related signals.

View Article and Find Full Text PDF

The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals.

View Article and Find Full Text PDF

The precise control of spiking in a population of neurons via applied electrical stimulation is a challenge due to the sparseness of spiking responses and neural system plasticity. We pose neural stimulation as a system control problem where the system input is a multidimensional time-varying signal representing the stimulation, and the output is a set of spike trains; the goal is to drive the output such that the elicited population spiking activity is as close as possible to some desired activity, where closeness is defined by a cost function. If the neural system can be described by a time-invariant (homogeneous) model, then offline procedures can be used to derive the control procedure; however, for arbitrary neural systems this is not tractable.

View Article and Find Full Text PDF

Exploratory tools that are sensitive to arbitrary statistical variations in spike train observations open up the possibility of novel neuroscientific discoveries. Developing such tools, however, is difficult due to the lack of Euclidean structure of the spike train space, and an experimenter usually prefers simpler tools that capture only limited statistical features of the spike train, such as mean spike count or mean firing rate. We explore strictly positive-definite kernels on the space of spike trains to offer both a structural representation of this space and a platform for developing statistical measures that explore features beyond count or rate.

View Article and Find Full Text PDF

This paper quantifies and comparatively validates functional connectivity between neurons by measuring the statistical dependence between their firing rates. Based on statistical analysis of the pairwise functional connectivity, we estimate, exclusively from neural data, the neural assembly functional connectivity given a behavior task, which provides a quantifiable representation of the dynamic nature during the behavioral task. Because of the time scale of behavior (100-1000 ms), a statistical method that yields robust estimators for this small sample size is desirable.

View Article and Find Full Text PDF