With the increase in the number of households raising dogs and the reports of human-to-dog transmission of oral bacteria, concerns about dogs' oral health and the need for oral hygiene management are increasing. In this study, the owners' perceptions about their dogs' oral health and the frequency of oral hygiene were determined along with the analysis of dog dental plaque bacteria through metagenomic amplicon sequencing so as to support the need for oral hygiene management for dogs. Although the perception of 63.
View Article and Find Full Text PDFWe have developed a membrane filter-assisted cell-based biosensing platform by using a polyester membrane as a three-dimensional (3D) cell culture scaffold in which cells can be grown by physical attachment. The membrane was simply treated with ethanol to increase surficial hydrophobicity, inducing the stable settlement of cells via gravity. The 3D membrane scaffold was able to provide a relatively longer cell incubation time (up to 16 days) as compared to a common two-dimensional (2D) cell culture environment.
View Article and Find Full Text PDFPeriodontitis is a chronic inflammatory disease caused by the gradual breakdown of tissues surrounding the teeth due to various factors. The disease has been frequently noted in dental outpatients for a number of years. Improvements are required to current diagnostic methods, which have limitations in assessing the condition and progression of periodontitis.
View Article and Find Full Text PDFBackground: The electrochemical biosensor is one of the typical sensing devices based on transducing the biochemical events to electrical signals. In this type of sensor, an electrode is a key component that is employed as a solid support for immobilization of biomolecules and electron movement. Thanks to numerous nanomaterials that possess the large surface area, synergic effects are enabled by improving loading capacity and the mass transport of reactants for achieving high performance in terms of analytical sensitivity.
View Article and Find Full Text PDFBackground: Human scalp hair is composed of bio-synthesized protein that stores and excretes excess elements from the body. Thus, the concentration of major and trace elements in the hair may provide insight into both the physiology and health status of humans. Monitoring of health status by hair analysis is limited by the uncertainty surrounding natural changes in composition based on age and sex parameters.
View Article and Find Full Text PDFThe tumor microenvironment plays an important role in cancer growth, invasion and metastasis. The stroma surrounding a tumor is known to contain a variety of factors that can increase angiogenesis, cancer growth and tumor progression. The aim of the present study was to determine the role of fascin in cancer growth and invasion and identify stromal factors involved in cancer progression.
View Article and Find Full Text PDFStroke patients often experience a walking dysfunction caused by decreased mobility, weakened muscular strength, abnormal posture control, and cognitive dysfunction. Anxiety/depression is the most important and prevalent neuropsychiatric complication of stroke survivors. Brain injury and the presence of malnutrition after stroke contribute to metabolic status and clinical outcome of patients.
View Article and Find Full Text PDFAn electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system.
View Article and Find Full Text PDFThe development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g.
View Article and Find Full Text PDFA hybrid-biosensor system that can simultaneously fulfill the immunoassay for protein markers (e.g., C-reactive protein (CRP) and procalcitonin (PCT)) and the enzyme assay for metabolic substances (e.
View Article and Find Full Text PDFPrototypical abnormalities of genome-wide DNA methylation constitute the most widely investigated epigenetic mechanism in human cancers. Errors in the cellular machinery to faithfully replicate the global 5-methylcytosine (5mC) patterns, commonly observed during tumorigenesis, give rise to misregulated biological pathways beneficial to the rapidly propagating tumor mass but deleterious to the healthy tissues of the affected individual. A growing body of evidence suggests that the global DNA methylation levels could serve as utilitarian biomarkers in certain cancer types.
View Article and Find Full Text PDFAlthough label-free immunosensors based on, for example, surface plasmon resonance (SPR) provide advantages of real-time monitoring of the analyte concentration, its application to routine clinical analysis in a semi-continuous manner is problematic because of the high cost of the sensor chip. The sensor chip is in most cases regenerated by employing an acidic pH. However, this causes gradual deterioration of the activity of the capture antibody immobilized on the sensor surface.
View Article and Find Full Text PDFUltraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined.
View Article and Find Full Text PDFTo assess the homeostasis of Ca(2+) metabolism, we have developed a rapid immunosensor for ionic calcium using a membrane chromatographic technique. As calcium-binding protein (CBP) is available for the recognition and undergone conformation change upon Ca(2+) binding, a monoclonal antibody sensitive to the altered structure of CBP has been employed. The sequential binding scheme was mathematically simulated and shown to match with the experimental results.
View Article and Find Full Text PDFThe intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA) was coupled with the fluorescent BODIPY dye (Red BSA), and then immobilized on a solid surface.
View Article and Find Full Text PDFWe report on an improved lateral flow immunoassay (LFIA) sensor with a magnetic focus for ultrasensitive naked-eye detection of pathogenic microorganisms at a near single cell limit without any pre-enrichment steps, by allowing the magnetic probes to focus the labelled pathogens to the target zone of the LF strip.
View Article and Find Full Text PDFMelanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis. We investigated the effects of a Polygoni Multiflori Ramulus extract on melanogenesis and isolated emodin from Polygoni Multiflori as an active compound. In addition, the possible mechanisms of action were examined.
View Article and Find Full Text PDFTo detect high-sensitivity cardiac troponin I (hs-cTnI; <0.01 ng/mL) at points of care, we developed a rapid immunosensor by using horseradish peroxidase polymerized in 20 molecules on average (Poly-HRP) as a tracer conjugated with streptavidin (SA-Poly-HRP). As shown in the conventional system, enhanced sensitivity could be achieved by using a sequential binding scheme for the complex formation to contain the huge molecular tracer.
View Article and Find Full Text PDFFluorescence-based single molecule techniques to interrogate gene expression in tissues present a very low signal-to-noise ratio due to the strong autofluorescence and other background signals from tissue sections. This report presents a background-free method using second-harmonic generation (SHG) nanocrystals as probes to quantify the messenger RNA (mRNA) of human epidermal growth receptor 2 (Her2) at single molecule resolution in specific phenotypes at single-cell resolution directly in tissues. Coherent SHG emission from individual barium titanium oxide (BTO) nanoprobes was demonstrated, allowing for a stable signal beyond the autofluorescence window.
View Article and Find Full Text PDFTo date most LF-ICA format for pathogen detection is based on generating color signals from gold nanoparticle (AuNP) tracers that are perceivable by naked eye but often these methods exhibit sensitivity lower than those associated with the conventional enzyme-based immunological methods or mandated by the regulatory guidelines. By developing AuNP avidin-biotin constructs in which a number of enzymes can be labeled we report on an enhanced LF-ICA system to detect pathogens at very low levels. With this approach we show that as low as 100 CFU/mL of Escherichia coli O157:H7 can be detected, indicating that the limit of detection can be increased by about 1000-fold due to our signal amplification approach.
View Article and Find Full Text PDFThe USFDA approved "epigenetic drug", Decitabine, exerts its effect by hypomethylating DNA, demonstrating the pivotal role aberrant genome-wide DNA methylation patterns play in cancer ontology. Using sensitive technologies in a cellular model of Acute Myeloid Leukemia, we demonstrate that while Decitabine reduces the global levels of 5-methylcytosine (5mC), it results in paradoxical increase of 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) levels. Hitherto, the only biological mechanism known to generate 5hmC, 5fC and 5caC, involving oxidation of 5mC by members of Ten-Eleven-Translocation (TET) dioxygenase family, was not observed to undergo any alteration during DAC treatment.
View Article and Find Full Text PDFCell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM).
View Article and Find Full Text PDFBackground: Genome-wide aberrations of the classic epigenetic modification 5-methylcytosine (5mC), considered the hallmark of gene silencing, has been implicated to play a pivotal role in mediating carcinogenic transformation of healthy cells. Recently, three epigenetic marks derived from enzymatic oxidization of 5mC namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), have been discovered in the mammalian genome. Growing evidence suggests that these novel bases possess unique regulatory functions and may play critical roles in carcinogenesis.
View Article and Find Full Text PDFConsumption of food contaminated with Escherichia coli O157:H7 is one of the major concerns in ensuring food safety. Techniques that are simple and suitable for fast screening to detect and identify pathogens in the food chain is vital to ensure food safety. In this work, we propose a simple and rapid technique to detect low levels of E.
View Article and Find Full Text PDF