Edge images are often used in computer vision, cellular morphology, and surveillance cameras, and are sufficient to identify the type of object. Single-pixel imaging (SPI) is a promising technique for wide-wavelength, low-light-level measurements. Conventional SPI-based edge-enhanced techniques have used shifting illumination patterns; however, this increases the number of the illumination patterns.
View Article and Find Full Text PDFUnlike conventional imaging, the single-pixel imaging technique uses a single-element detector, which enables high sensitivity, broad wavelength, and noise robustness imaging. However, it has several challenges, particularly requiring extensive computations for image reconstruction with high image quality. Therefore, high-performance computers are required for real-time reconstruction with higher image quality.
View Article and Find Full Text PDFComputational holography, encompassing computer-generated holograms and digital holography, utilizes diffraction calculations based on complex-valued operations and complex Fourier transforms. However, for some holographic applications, only real-valued holograms or real-valued diffracted results are required. This study proposes a real-valued diffraction calculation that does not require any complex-valued operation.
View Article and Find Full Text PDFFourier transform-based diffraction calculations are essential for computational optics. However, the diffraction calculations can be corrupted by the introduction of strong ringing artifacts due to the introduction of zero-padding to avoid circular convolution or to control the sampling intervals. We propose a simple de-ringing method using average subtractions for application to on-axis and off-axis diffraction calculations.
View Article and Find Full Text PDFSingle-pixel imaging allows for high-speed imaging, miniaturization of optical systems, and imaging over a broad wavelength range, which is difficult by conventional imaging sensors, such as pixel arrays. However, a challenge in single-pixel imaging is low image quality in the presence of undersampling. Deep learning is an effective method for solving this challenge; however, a large amount of memory is required for the internal parameters.
View Article and Find Full Text PDFRecently, a calculation method involving sparse point spread functions in the short-time Fourier transform (STFT) domain was proposed. In this paper, a dedicated processor using the STFT algorithm is described, which is implemented on a field-programmable gate array. All the operations in this algorithm are implemented using fixed-point arithmetic.
View Article and Find Full Text PDFWe propose a phase retrieval method using axial diffraction patterns under planar and spherical wave illuminations. The proposed method uses a ptychographic iterative engine (PIE) for the phase retrieval algorithm. The proposed approach uses multiple diffraction patterns.
View Article and Find Full Text PDFThis Letter aims to propose a dynamic-range compression and decompression scheme for digital holograms that uses a deep neural network (DNN). The proposed scheme uses simple thresholding to compress the dynamic range of holograms with 8-bit gradation to binary holograms. Although this can decrease the amount of data by one-eighth, the binarization strongly degrades the image quality of the reconstructed images.
View Article and Find Full Text PDF