Publications by authors named "Ikuko Nagatsu"

Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH.

View Article and Find Full Text PDF

1. Previously, we reported that an optimal dose of lipopolysaccharide (LPS) markedly extends the life span of mouse primary-cultured microglia by suppressing apoptotic and autophagic cell death pathways. The aim of the present study was to assess how these cells protect themselves against reactive oxygen species (ROS) generated by LPS treatment.

View Article and Find Full Text PDF

Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear.

Objective: Our aim was to examine the regulation of activated microglia through their cell death and survival pathways.

View Article and Find Full Text PDF

This review summarizes the effects of neuroinflammatory stress on the subventricular zone (SVZ), where new neurons are constitutively produced in the adult brain, especially focusing on the relation with Parkinson's disease (PD), because the SVZ is under the control of dopaminergic afferents from the substantia nigra (SN). In Lewy bodies-positive-PD, microglia is known to phagocytoze aggregated α-synuclein, resulting in the release of inflammatory cytokines. The neurogenesis in the SVZ should be affected in PD brain by the neuroinflammatory process.

View Article and Find Full Text PDF

Because the subventricular zone (SVZ) constantly supplies newly generated neurons to the olfactory bulb (OB) along the rostral migratory stream (RMS) in adult brain, SVZ-RMS-OB axis has been thought to work as a unit. We previously reported that peripherally injected lipopolysaccharide (LPS) induces apoptosis in the OB in young adult mice. Therefore, this study was undertaken to examine whether peripherally injected LPS induces apoptotic cell death also in the SVZ.

View Article and Find Full Text PDF

The objective of the present study was to determine with precision the localization of neurons and fibers immunoreactive (ir) for aromatic L-amino acid decarboxylase (AADC), the second-step enzyme responsible for conversion of L-dihydroxyphenylalanine (L-DOPA) to dopamine (DA) and 5-hydroxytryptophan (5-HTP) to serotonin (5-hydroxytryptamine: 5-HT) in the midbrain, pons, and medulla oblongata of the adult human brain. Intense AADC immunoreactivity was observed in a large number of presumptive 5-HT neuronal cell bodies distributed in all of the raphe nuclei, as well as in regions outside the raphe nuclei such as the ventral portions of the pons and medulla. Moderate to strong immunoreaction was observable in presumptive DA cells in the mesencephalic reticular formation, substantia nigra, and ventral tegmental area of Tsai, as well as in presumptive noradrenergic (NA) cells, which were aggregated in the locus coeruleus and dispersed in the subcoeruleus nuclei.

View Article and Find Full Text PDF

Microglial activation has been implicated in the recognition and phagocytic removal of degenerating neurons; however, this process must be tightly regulated in the central nervous system, because prolonged activation could damage normal neurons. We report that mouse primary-cultured microglia, which are destined to die within a few days under ordinary culture conditions, can live for more than 1 month when kept activated by lipopolysaccharide (LPS) treatment. Primary-cultured microglia treated with sublethal doses of LPS remained viable, without any measurable increase in apoptotic or necrotic cell death.

View Article and Find Full Text PDF

Peripheral administration of lipopolysaccharide (LPS) in an amount that produces acute stress has been found to affect the catecholamine systems in the brain. Acute peripheral LPS administration activated norepinephrine (NE) metabolism in the locus ceruleus (LC). Approximately 40% of murine LC neurons project to the olfactory bulb (OB) and the anterior olfactory nucleus (AON).

View Article and Find Full Text PDF

Dopa-responsive dystonia (DRD) is a hereditary dystonia characterized by a childhood onset of fixed dystonic posture with a dramatic and sustained response to relatively low doses of levodopa. DRD is thought to result from striatal dopamine deficiency due to a reduced synthesis and activity of tyrosine hydroxylase (TH), the synthetic enzyme for dopamine. The mechanisms underlying the genesis of dystonia in DRD present a challenge to models of basal ganglia movement control, given that striatal dopamine deficiency is the hallmark of Parkinson's disease.

View Article and Find Full Text PDF

The present study examined dopamine-immunoreactive neuronal structures using immunohistochemistry in conjunction with an anti-dopamine antiserum, following injection of l-3,4-dihydroxyphenylalanine (L-DOPA) with or without an inhibitor of monoamine oxidase (Pargyline) in the cat brain. L-DOPA injection made it possible to detect dopamine immunoreactivity in presumptive serotonergic and noradrenergic cell bodies and axons. Weak to moderate dopamine immunoreactivity was observed in non-aminergic cells (possibly so-called "D" cells containing aromatic L-amino acid decarboxylase (AADC)) in several hypothalamic, midbrain, pontine and medullary nuclei.

View Article and Find Full Text PDF

From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC).TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus.

View Article and Find Full Text PDF

Cytokines and catecholamines are known to constitute a significant portion of the regulatory neuroimmune networks involved in maintaining homeostasis in the central nervous system (CNS). Although we have already reported an increase in norepinephrine (NE) turnover within the locus coeruleus (LC) at 2 and 4 h after the intraperitoneal (i.p.

View Article and Find Full Text PDF

The olfactory bulb (OB) is one of the few structures in the adult mammalian CNS that contains a continuous supply of newly generated neurons in the subventricular zone. Therefore, the balance between the supply of new cells and apoptosis in the OB might determine olfactory function. Lipopolysaccharide-induced tumor necrosis factor (TNF)-alpha triggers the apoptotic cascade mediated by the TNF/TNF receptor (TNFR) pathway.

View Article and Find Full Text PDF

The human striatum, especially its ventral part, the nucleus accumbens, contains numerous neurons immunoreactive for aromatic L-amino acid decarboxylase (AADC, the second-step monoamine synthesizing enzyme, =DDC: dopa decarboxylase), but not for tyrosine hydroxylase (TH, the first-step catecholamine synthesizing enzyme) or tryptophan hydroxylase (TPH, the first-step serotonin synthesizing enzyme) (Neurosci Lett 232 (1997) 111-114). These AADC (+)/TH (-)/TPH (-) neurons are named as D-neurons (Jaeger CB, Ruggiero DA, Albert VR, Joh TH, Reis DJ. Immunocytochemical localization of aromatic-L-amino acid decarboxylase.

View Article and Find Full Text PDF

Sepiapterin reductase (SPR) is the enzyme that catalyzes the final step of the synthesis of tetrahydrobiopterin (BH4), the cofactor for phenylalanine hydroxylase, tyrosine hydroxylase (TH), tryptophan hydroxylase, and nitric oxide synthase (NOS). Although SPR is essential for synthesizing BH4, the distribution of SPR in the human brain has not yet been clarified. In the present study, we purified recombinant human SPR from cDNA, raised an antibody against human SPR (hSPR), and examined the localization of SPR protein and SPR activity.

View Article and Find Full Text PDF

Background: Aromatic L-amino acid decarboxylase (AADC) is the enzyme responsible for the decarboxylation step in both the catecholamine and indoleamine synthetic pathways. In the brain, however, a group of AADC containing neurones is found outside the classical monoaminergic cell groups. Since such non-monoaminergic AADC is expressed abundantly in the suprachiasmatic nucleus (SCN), the mammalian circadian centre, we characterized the role of AADC in circadian oscillation.

View Article and Find Full Text PDF

One potential strategy for gene therapy of Parkinson's disease (PD) is the local production of dopamine (DA) in the striatum induced by restoring DA-synthesizing enzymes. In addition to tyrosine hydroxylase (TH) and aromatic-L-amino-acid decarboxylase (AADC), GTP cyclohydrolase I (GCH) is necessary for efficient DA production. Using adeno-associated virus (AAV) vectors, we previously demonstrated that expression of these three enzymes in the striatum resulted in long-term behavioral recovery in rat models of PD.

View Article and Find Full Text PDF

Neuropilin 1 is the specific receptor for Sema3A and plays a role in nerve fiber guidance. We report that neuropilin 1 and Sema3A mutant mouse embryos, generated by targeted gene disruption, showed displacement of sympathetic neurons and their precursors and abnormal morphogenesis in the sympathetic trunk. We also show that Sema3A suppressed the cell migration activity of sympathetic neurons from wild-type but not neuropilin 1 mutant embryos in vitro and instead promoted their accumulation into compact cell masses and fasciculation of their neurites.

View Article and Find Full Text PDF

Pheochromocytoma is a catecholamine (CA)-producing tumor that is classified into two types: the norepinephrine (NE) and the mixed NE and epinephrine type (E-type) from plasma CA levels. Phenylethanolamine N-methyltransferase (PNMT) is the terminal enzyme in CA synthesis; it catalyzes the synthesis of E from NE. It is not known whether the absence of immunoreactive PNMT is paralleled by a lack of PNMT mRNA.

View Article and Find Full Text PDF

Four cases of mixed neuroendocrine-neural tumors composed of pheochromocytoma and neuroblastoma elements (including ganglioneuroma and ganglioneuroblastoma) were studied for the presence of catecholamine-synthesizing enzymes, neuroendocrine markers, and peptide hormones with clinicopathological correlations. Paroxysmal hypertension with hypercatech olaminemia was observed in 3 patients. One patient had an extremely elevated level of dopamine.

View Article and Find Full Text PDF