X chromosome dosage compensation ensures balanced gene dosage between the X chromosome and autosomes and between the sexes, involving divergent mechanisms among mammals. We elucidated a distinct mechanism for X chromosome inactivation (XCI) in cynomolgus monkeys, a model for human development. The trophectoderm and cytotrophoblast acquire XCI around implantation through an active intermediate bearing repressive modifications and compacted structure, whereas the amnion, epiblast, and hypoblast maintain such an intermediate protractedly, attaining XCI by a week after implantation.
View Article and Find Full Text PDFIn the early fetal stage, the gonads are bipotent and only later become the ovary or testis, depending on the genetic sex. Despite many studies examining how sex determination occurs from biopotential gonads, the spatial and temporal organization of bipotential gonads and their progenitors is poorly understood. Here, using lineage tracing in mice, we find that the gonads originate from a T primitive streak through WT1 posterior intermediate mesoderm and appear to share origins anteriorly with the adrenal glands and posteriorly with the metanephric mesenchyme.
View Article and Find Full Text PDFTrophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development.
View Article and Find Full Text PDFThe in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, , , and , which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs.
View Article and Find Full Text PDFThe placenta forms a maternal-fetal junction that supports many physiological functions such as the supply of nutrition and exchange of gases and wastes. Establishing an in vitro culture model of human and non-human primate trophoblast stem/progenitor cells is important for investigating the process of early placental development and trophoblast differentiation. In this study, we have established five trophoblast stem cell (TSC) lines from cynomolgus monkey blastocysts, named macTSC #1-5.
View Article and Find Full Text PDFGene-regulatory networks control the establishment and maintenance of alternative gene-expression states during development. A particular challenge is the acquisition of opposing states by two copies of the same gene, as in the case of the long non-coding RNA Xist in mammals at the onset of random X-chromosome inactivation (XCI). The regulatory principles that lead to stable mono-allelic expression of Xist remain unknown.
View Article and Find Full Text PDFMethods Mol Biol
June 2019
Transcriptional and epigenetic dynamics of the genome occur during early development in mammals. It has been difficult to study these dynamics due to the limitation of materials and the difficulty of handling. In this chapter, we describe our attempt to apply a combination of immunofluorescence (IF), and RNA and DNA fluorescent in situ hybridization (FISH) in preimplantation mouse embryos.
View Article and Find Full Text PDFIn mammals, the development of pluripotency and specification of primordial germ cells (PGCs) have been studied predominantly using mice as a model organism. However, divergences among mammalian species for such processes have begun to be recognized. Between humans and mice, pre-implantation development appears relatively similar, but the manner and morphology of post-implantation development are significantly different.
View Article and Find Full Text PDFThe in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring.
View Article and Find Full Text PDFSingle-cell mRNA sequencing (RNA-seq) methods have undergone rapid development in recent years, and transcriptome analysis of relevant cell populations at single-cell resolution has become a key research area of biomedical sciences. We here present single-cell mRNA 3-prime end sequencing (SC3-seq), a practical methodology based on PCR amplification followed by 3-prime-end enrichment for highly quantitative, parallel and cost-effective measurement of gene expression in single cells. The SC3-seq allows excellent quantitative measurement of mRNAs ranging from the 10,000-cell to 1-cell level, and accordingly, allows an accurate estimate of the transcript levels by a regression of the read counts of spike-in RNAs with defined copy numbers.
View Article and Find Full Text PDFDuring early development of female mouse embryos, both X chromosomes are transiently active. X gene dosage is then equalized between the sexes through the process of X chromosome inactivation (XCI). Whether the double dose of X-linked genes in females compared with males leads to sex-specific developmental differences has remained unclear.
View Article and Find Full Text PDF