Publications by authors named "Ikonomou L"

Article Synopsis
  • - The study focuses on creating mature thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) to address hypothyroidism, whether from surgeries or congenital issues.
  • - Researchers developed a new iPSC line that helps identify TFCs and optimized a serum-free media process where factors like BMP4 and FGF2 are crucial for guiding cell differentiation into TFCs.
  • - Although the resulting TFCs showed proper development and function in lab tests, they were ineffective in treating hypothyroidism when transplanted into mice with the condition.
View Article and Find Full Text PDF
Article Synopsis
  • The rise of businesses marketing unproven stem cell therapies directly to consumers poses challenges for effective government regulation in the health market.
  • Recent examples from Australia and Canada show that these regulatory bodies can successfully implement targeted actions to address these issues.
  • The findings suggest that fears about the inability to regulate this market may be overstated.
View Article and Find Full Text PDF

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade, increasing evidence from preclinical models suggests that mesenchymal stromal cells, which are not normally resident in the lung, can be used to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models.

View Article and Find Full Text PDF

Advances in single-cell RNA sequencing provide an unprecedented window into cellular identity. The abundance of data requires new theoretical and computational frameworks to analyze the dynamics of differentiation and integrate knowledge from cell atlases. We present 'single-cell Type Order Parameters' (scTOP): a statistical, physics-inspired approach for quantifying cell identity given a reference basis of cell types.

View Article and Find Full Text PDF

The field of regenerative medicine, including cellular immunotherapies, is on a remarkable growth trajectory. Dozens of cell-, tissue- and gene-based products have received marketing authorization worldwide while hundreds-to-thousands are either in preclinical development or under clinical investigation in phased clinical trials. However, the promise of regenerative therapies has also given rise to a global industry of direct-to-consumer offerings of prematurely commercialized cell and cell-based products with unknown safety and efficacy profiles.

View Article and Find Full Text PDF

Alveolar type 2 epithelial cells (AT2s) derived from human induced pluripotent stem cells (iAT2s) have rapidly contributed to our understanding of AT2 function and disease. However, while iAT2s are primarily cultured in three-dimensional (3D) Matrigel, a matrix derived from cancerous mouse tissue, it is unclear how a physiologically relevant matrix will impact iAT2s phenotype. As extracellular matrix (ECM) is recognized as a vital component in directing cellular function and differentiation, we sought to derive hydrogels from decellularized human lung alveolar-enriched ECM (aECM) to provide an ex vivo model to characterize the role of physiologically relevant ECM on iAT2 phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a mouse induced pluripotent stem cell (iPSC) line that can specifically produce lung mesenchyme, which is crucial for lung development and disease.
  • They identified specific pathways (RA and Shh) that are necessary for differentiating these iPSCs into lung mesenchyme, which exhibits similar features to primary lung mesenchyme.
  • These iPSC-derived lung mesenchymal cells can organize into 3D structures with lung epithelial progenitors, demonstrating their potential for studying lung development, modeling diseases, and developing new treatments.
View Article and Find Full Text PDF

Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity.

View Article and Find Full Text PDF

Patient interest in non-trial access pathways to investigational cell-and gene-based interventions, such as expanded access in the USA, is increasing, while the regulatory and business environments for non-trial access in the cell and gene therapy field are shifting. Against this background, in 2022 the International Society for Cell & Gene Therapy (ISCT) established a Working Group on Expanded Access to identify practical, ethical, and regulatory issues emerging from the use (and possible misuse) of the expanded access pathway in the cell and gene therapy field. In this Short Report, the Working Group sets the stage for its future activities by analyzing the history of expanded access and identifying three examples of questions that we anticipate arising as uses of expanded access for investigational cell and gene-based interventions increase and evolve.

View Article and Find Full Text PDF

Neonatal lung and heart diseases, albeit rare, can result in poor quality of life, often require long-term management and/or organ transplantation. For example, Congenital Heart Disease (CHD) is one of the most common type of congenital disabilities, affecting nearly 1% of the newborns, and has complex and multifactorial causes, including genetic predisposition and environmental influences. To develop new strategies for heart and lung regeneration in CHD and neonatal lung disease, human induced pluripotent stem cells (hiPSCs) provide a unique and personalized platform for future cell replacement therapy and high-throughput drug screening.

View Article and Find Full Text PDF

Advances in single-cell RNA-sequencing (scRNA-seq) provide an unprecedented window into cellular identity. The increasing abundance of data requires new theoretical and computational frameworks for understanding cell fate determination, accurately classifying cell fates from expression data, and integrating knowledge from cell atlases. Here, we present single-cell Type Order Parameters (scTOP): a statistical-physics-inspired approach for constructing "order parameters" for cell fate given a reference basis of cell types.

View Article and Find Full Text PDF

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung.

View Article and Find Full Text PDF

Hospital exemption (HE) is a regulated pathway that allows the use of advanced therapy medicinal products (ATMPs) within the European Union (EU) under restrictive conditions overseen by national medicine agencies. In some EU countries, HE is granted for ATMPs with no demonstrated safety and efficacy; therefore, they are equivalent to investigational drugs. In other countries, HE is granted for ATMPs with demonstrated quality, safety and efficacy and for which centralized marketing authorization has not been requested.

View Article and Find Full Text PDF

The significant morbidity and mortality of coronavirus disease 19 (COVID-19) prompted a global race to develop new therapies. These include interventions using cell- or cell-derived products, several of which are being tested in well-designed, properly controlled clinical trials. Yet, the search for cell-based COVID-19 treatments has also been fraught with hyperbolic claims; flouting of crucial regulatory, scientific, and ethical norms; and distorted communication of research findings.

View Article and Find Full Text PDF

Stem cell-based therapies to reconstitute organ function hold great promise for future clinical applications to a variety of diseases. Hypothyroidism resulting from congenital lack of functional thyrocytes, surgical tissue removal, or gland ablation, represents a particularly attractive endocrine disease target that may be conceivably cured by transplantation of long-lived functional thyroid progenitors or mature follicular epithelial cells, provided a source of autologous cells can be generated and a variety of technical and biological challenges can be surmounted. Here we review the emerging literature indicating that thyroid follicular epithelial cells can now be engineered from the pluripotent stem cells (PSCs) of mice, normal humans, or patients with congenital hypothyroidism.

View Article and Find Full Text PDF

The global COVID-19 pandemic has prompted urgent need for potential therapies for severe respiratory consequences resulting from coronavirus infection. New therapeutic agents that will attenuate ongoing inflammation and at the same time promote regeneration of injured lung epithelial cells are urgently needed. Cell-based therapies, primarily involving mesenchymal stromal cells (MSCs) and their derivatives, are currently investigated worldwide for SARS-CoV-2-induced lung diseases.

View Article and Find Full Text PDF

A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung.

View Article and Find Full Text PDF

Development of an anti-SARS-CoV-2 therapeutic is hindered by the lack of physiologically relevant model systems that can recapitulate host-viral interactions in human cell types, specifically the epithelium of the lung. Here, we compare induced pluripotent stem cell (iPSC)-derived alveolar and airway epithelial cells to primary lung epithelial cell controls, focusing on expression levels of genes relevant for COVID-19 disease modeling. iPSC-derived alveolar epithelial type II-like cells (iAT2s) and iPSC-derived airway epithelial lineages express key transcripts associated with lung identity in the majority of cells produced in culture.

View Article and Find Full Text PDF

Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-β superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut.

View Article and Find Full Text PDF