Publications by authors named "Iko T Koevoets"

Soil salinity is a major contributor to crop yield losses. To improve our understanding of root responses to salinity, we developed and exploited a real-time salt-induced tilting assay. This assay follows root growth upon both gravitropic and salt challenges, revealing that root bending upon tilting is modulated by Na+ ions, but not by osmotic stress.

View Article and Find Full Text PDF

In most abiotic stress conditions, including salinity and water deficit, the developmental plasticity of the plant root is regulated by the phytohormone auxin. Changes in auxin concentration are often attributed to changes in shoot-derived long-distance auxin flow. However, recent evidence suggests important contributions by short-distance auxin transport from local storage and local auxin biosynthesis, conjugation, and oxidation during abiotic stress.

View Article and Find Full Text PDF

Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of , a highly adapted relative of Arabidopsis () native to the Rocky Mountains.

View Article and Find Full Text PDF

Salinity of the soil is highly detrimental to plant growth. Plants respond by a redistribution of root mass between main and lateral roots, yet the genetic machinery underlying this process is still largely unknown. Here, we describe the natural variation among 347 accessions in root system architecture (RSA) and identify the traits with highest natural variation in their response to salt.

View Article and Find Full Text PDF

Root system analysis is a complex task, often performed with fully automated image analysis pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to underestimated biases. We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root system images (10,000).

View Article and Find Full Text PDF

Plants growing at high densities elongate their shoots to reach for light, a response known as the shade avoidance syndrome (SAS). Phytochrome-mediated detection of far-red light reflection from neighboring plants activates growth-promoting molecular pathways leading to SAS However, it is unknown how plants that complete their life cycle in the forest understory and are shade tolerant prevent SAS when exposed to shade. Here, we show how two wild species from different native light environments regulate contrasting responses to light quality cues.

View Article and Find Full Text PDF

To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking.

View Article and Find Full Text PDF