Macroautophagy is thought to have a critical role in shaping and refining cellular proteostasis in eukaryotic cells recovering from DNA damage. Here, we report a mechanism by which autophagy is suppressed in cells exposed to bacterial toxin-, chemical-, or radiation-mediated sources of genotoxicity. Autophagy suppression is directly linked to cellular responses to DNA damage, and specifically the stabilization of the tumor suppressor p53, which is both required and sufficient for regulating the ubiquitination and proteasome-dependent reduction in cellular pools of microtubule-associated protein 1 light chain 3 (LC3A/B), a key precursor of autophagosome biogenesis and maturation, in both epithelial cells and an organoid model.
View Article and Find Full Text PDFPersistent human gastric infection with is the single most important risk factor for development of gastric malignancy, which is one of the leading causes of cancer-related deaths worldwide. An important virulence factor for colonization and severity of gastric disease is the protein exotoxin VacA, which is secreted by the bacterium and modulates functional properties of gastric cells. VacA acts by damaging mitochondria, which impairs host cell metabolism through impairment of energy production.
View Article and Find Full Text PDFRecovery from COVID-19 depends on the ability of the host to effectively neutralize virions and infected cells, a process largely driven by antibody-mediated immunity. However, with the newly emerging variants that evade Spike-targeting antibodies, re-infections and breakthrough infections are increasingly common. A full characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mechanisms counteracting antibody-mediated immunity is therefore needed.
View Article and Find Full Text PDFSARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14.
View Article and Find Full Text PDFSARS-CoV-2 non-structural protein Nsp14 is a highly conserved enzyme necessary for viral replication. Nsp14 forms a stable complex with non-structural protein Nsp10 and exhibits exoribonuclease and N7-methyltransferase activities. Protein-interactome studies identified human sirtuin 5 (SIRT5) as a putative binding partner of Nsp14.
View Article and Find Full Text PDFDeclining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation.
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare the new bone formation capability of zirconia with those of other synthetic bone grafts.
Materials And Methods: Twelve rabbits were used and four 6-mm diameter transcortical defects were formed on each calvaria. Each defect was filled with Osteon II (Os), Tigran PTG (Ti), and zirconia (Zi) bone grafts.
Helicobacter pylori (Hp) vacuolating cytotoxin (VacA) is a bacterial exotoxin that enters host cells and induces mitochondrial dysfunction. However, the extent to which VacA-dependent mitochondrial perturbations affect overall cellular metabolism is poorly understood. We report that VacA perturbations in mitochondria are linked to alterations in cellular amino acid homeostasis, which results in the inhibition of mammalian target of rapamycin complex 1 (mTORC1) and subsequent autophagy.
View Article and Find Full Text PDFWe describe a novel insulin-degrading enzyme, SidC, that contributes to the proliferation of the human bacterial pathogen Vibrio vulnificus in a mouse model. SidC is phylogenetically distinct from other known insulin-degrading enzymes and is expressed and secreted specifically during host infection. Purified SidC causes a significant decrease in serum insulin levels and an increase in blood glucose levels in mice.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2013
Virulence mechanisms underlying Helicobacter pylori persistence and disease remain poorly understood, in part, because the factors underlying disease risk are multifactorial and complex. Among the bacterial factors that contribute to the cumulative pathophysiology associated with H. pylori infections, the vacuolating cytotoxin (VacA) is one of the most important.
View Article and Find Full Text PDFVibrio vulnificus produces siderophores, lowmolecular- weight iron-chelating compounds, to obtain iron under conditions of iron deprivation. To identify genes associated with the biosynthesis of siderophore in V. vulnificus MO6-24/ O, we screened clones with mini-Tn5 random insertions for those showing decreased production of siderophore.
View Article and Find Full Text PDFCDR3 of the heavy-chain variable region of immunoglobulin is a region in which somatic mutation occurs heavily after secondary antibody response, resulting in an affinity maturation of antibodies in vivo. The aim of this study was to improve the affinity of a human single-chain variable fragment (scFv) specific for pre-S1 of hepatitis B virus (HBV) by introducing random mutagenesis in CDR3 variable region of heavy chain (V(H)) of the parental scFv clone 1E4. By using a BIAcore for panning and screening, we have selected three clones (A9, B2, and B9) with lower highest affinity (K(D)) than 1E4.
View Article and Find Full Text PDFWe report the construction of a large nonimmunized human phage antibody library in single-chain variable region fragment (scFv) format, which allowed the selection of antibodies that neutralize hepatitis B virus (HBV) in vitro. We generated 1.1 x 10(10) independent scFv clones using the cDNA of functional variable (V) gene segments of heavy and light chains purified from the peripheral blood mononuclear cells of 50 nonimmunized human donors.
View Article and Find Full Text PDFPurpose: In the present study an antigen-mimetic peptide of the anti-JL1 leukemia-specific monoclonal antibody (mAb) was identified and characterized.
Methods: From combinatorial peptide phage display libraries displaying the random linear heptapeptides and dodecapeptides, we selected clones with affinity to anti-JL1 mAb through repeated rounds of panning on a mAb-coated ELISA plate. The antigenicity and immunogenicity of the peptide epitopes were then studied using chemically synthesized peptides.