IEEE ASME Int Conf Adv Intell Mechatron
July 2018
A novel method of tactile communication among human-robot and robot-robot collaborative teams is developed for the purpose of adaptive grasp control of dexterous robotic hands. Neural networks are applied to the problem of classifying the direction objects slide against different tactile fingertip sensors in real-time. This ability to classify the direction that an object slides in a dexterous robotic hand was used for adaptive grasp synergy control to afford context dependent robotic reflexes in response to the direction of grasped object slip.
View Article and Find Full Text PDF