Publications by authors named "Iker Irisarri"

Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera.

View Article and Find Full Text PDF

Land plants are astounding processors of information; due to their sessile nature, they adjust the molecular programs that define their development and physiology in accordance with the environment in which they dwell. Transduction of the external input to the respective internal programs hinges to a large degree on molecular signaling cascades, many of which have deep evolutionary origins in the ancestors of land plants and its closest relatives, streptophyte algae. In this Review, we discuss the evolutionary history of the defining factors of streptophyte signaling cascades, circuitries that not only operate in extant land plants and streptophyte algae, but that also likely operated in their extinct algal ancestors hundreds of millions of years ago.

View Article and Find Full Text PDF
Article Synopsis
  • The genomes of lungfishes, particularly the recently sequenced African and South American species, provide insights into the evolutionary transition from fish to tetrapods during the Devonian period.
  • The Lepidosiren genome is the largest animal genome sequenced to date, about 91 Gb, and features significant genome expansion due to active transposable elements, growing rapidly over the past 100 million years.
  • The study finds that while lungfish chromosomes retain features of their ancient tetrapod ancestors, the loss of limb-like appendages in some species is likely linked to the deletion of specific enhancers associated with limb development.
View Article and Find Full Text PDF
Article Synopsis
  • Green algae in the genus Oophila are found in amphibian egg capsules mainly in North America and Europe, and their genetic relationships were studied using a dataset of protein-coding nuclear genes.
  • The research reveals that several types of Oophila are closely related to specific frog species across continents, as well as to free-living algae that are also part of the Oophila group.
  • The findings suggest the need for a taxonomic revision of these algae since the distinct relationships and varieties indicate they may represent different species within the Oophila clade.
View Article and Find Full Text PDF

Land plants (embryophytes) came about in a momentous evolutionary singularity: plant terrestrialization. This event marks not only the conquest of land by plants but also the massive radiation of embryophytes into a diverse array of novel forms and functions. The unique suite of traits present in the earliest land plants is thought to have been ushered in by a burst in genomic novelty.

View Article and Find Full Text PDF

Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure.

View Article and Find Full Text PDF

Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.

View Article and Find Full Text PDF

The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants.

View Article and Find Full Text PDF
Article Synopsis
  • Zygnematophyceae, a group of filamentous algae, are closely related to land plants, and this study sequenced four of their genomes, creating detailed chromosome-scale assemblies for three strains of Zygnema circumcarinatum.
  • The research identified key traits in their common ancestor with land plants that may have enabled plants to adapt to life on land, including expanded genes for signaling, environmental responses, and multicellular growth.
  • Additionally, the study revealed shared enzymes for cell wall synthesis between Zygnematophyceae and land plants, suggesting a genetic framework that integrates environmental responses with developmental growth over 600 million years of evolution.
View Article and Find Full Text PDF

Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo.

View Article and Find Full Text PDF

Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes.

View Article and Find Full Text PDF

Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants). Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out.

View Article and Find Full Text PDF

Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land.

View Article and Find Full Text PDF

The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of .

View Article and Find Full Text PDF

IMP dehydrogenase and GMP reductase are enzymes from the same protein family with analogous structures and catalytic mechanisms that have gained attention because of their essential roles in nucleotide metabolism and as potential drug targets. This study focusses on GuaB3, a less-explored enzyme within this family. Phylogenetic analysis uncovers GuaB3's independent evolution from other members of the family and it predominantly occurs in Cyanobacteria.

View Article and Find Full Text PDF

Plant terrestrialization brought forth the land plants (embryophytes). Embryophytes account for most of the biomass on land and evolved from streptophyte algae in a singular event. Recent advances have unravelled the first full genomes of the closest algal relatives of land plants; among the first such species was Mesotaenium endlicherianum.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers analyzed 22 species of amphibious actinopterygian fishes to catalogue AQP members, study gene evolution, and assess adaptive changes, finding evidence of positive selection in 21 AQPs across 5 classes, particularly in AQP11.
  • * The changes in AQP11 suggest adaptations relevant to amphibious lifestyles, with the AQP11 orthologues being key candidates for facilitating water-to-land transition, and positive selection seen in the Gobi
View Article and Find Full Text PDF

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of and one strain of ) and generated chromosome-scale assemblies for all strains of the emerging model system .

View Article and Find Full Text PDF

The taxon Elasmobranchii (sharks and rays) contains one of the long-established evolutionary lineages of vertebrates with a tantalizing collection of species occupying critical aquatic habitats. To overcome the current limitation in molecular resources, we launched the Squalomix Consortium in 2020 to promote a genome-wide array of molecular approaches, specifically targeting shark and ray species. Among the various bottlenecks in working with elasmobranchs are their elusiveness and low fecundity as well as the large and highly repetitive genomes.

View Article and Find Full Text PDF

The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta). There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.

View Article and Find Full Text PDF

There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant.

View Article and Find Full Text PDF

Cichlid fishes of the tribe Tropheini are a striking case of adaptive radiation, exemplifying multiple trophic transitions between herbivory and carnivory occurring in sympatry with other established cichlid lineages. Tropheini evolved highly specialized eco-morphologies to exploit similar trophic niches in different ways repeatedly and rapidly. To better understand the evolutionary history and trophic adaptations of this lineage, we generated a dataset of 532 targeted loci from 21 out of the 22 described Tropheini species.

View Article and Find Full Text PDF
Article Synopsis
  • Gastropods, a diverse group of mollusks, have survived multiple mass extinctions, leading to significant variations in their structure, ecology, and development, which complicates understanding their evolutionary relationships.
  • Recent research generated new transcriptome data from 12 gastropod taxa to clarify their phylogenetic relationships and included the deep-sea Neomphaliones for the first time using a phylogenomic approach.
  • The study established a strongly supported framework for gastropod relationships, identifying Patellogastropoda as the sister group to all other gastropods and confirming five main subclasses within Gastropoda: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenog
View Article and Find Full Text PDF