In EGFR-mutated lung cancer, the duration of response to tyrosine kinase inhibitors (TKIs) is limited by the development of acquired drug resistance. Despite the crucial role played by apoptosis-related genes in tumor cell survival, how their expression changes as resistance to EGFR-TKIs emerges remains unclear. Here, we conduct a comprehensive analysis of apoptosis-related genes, including BCL-2 and IAP family members, using single-cell RNA sequence (scRNA-seq) and spatial transcriptomics (ST).
View Article and Find Full Text PDFIntroduction: Mechanisms of resistance to EGFR exon 20 insertion mutation active inhibitors have not been extensively studied in either robust preclinical models or patient-derived rebiopsy specimens. We sought to characterize on-target resistance mutations identified in exon 20 insertion-mutated lung cancers treated with mobocertinib or poziotinib and evaluate whether these mutations would or would not have cross-resistance to next-generation inhibitors zipalertinib, furmonertinib, and sunvozertinib.
Methods: We identified mechanisms of resistance to EGFR exon 20 insertion mutation active inhibitors and then used preclinical models of EGFR exon 20 insertion mutations (A767_V769dupASV, D770_N771insSVD, V773_C774insH) plus common EGFR mutants to probe inhibitors in the absence/presence of EGFR-T790M or EGFR-C797S.
Lung Cancer
July 2023
Background: The epidermal growth factor receptor (EGFR)-K745_E746insIPVAIK and others with XPVAIK amino-acid insertions are exon 19 insertion mutations, which, at the structural modeling level, resemble EGFR tyrosine kinase inhibitor (TKI)-sensitizing mutants. An important unmet need is the characterization of therapeutic windows plus clinical outcomes of exon 19 XPVAIK amino-acid insertion mutations to available EGFR TKIs.
Methods: We used preclinical models of EGFR-K745_E746insIPVAIK and more typical EGFR mutations (exon 19 deletion, L858R, L861Q, G719S, A763_Y764insFQEA, other exon 20 insertion mutations) to probe representative 1st (erlotinib), 2nd (afatinib), 3rd generation (osimertinib), and EGFR exon 20 insertion active (mobocertinib) TKIs.
Histone modifications play crucial roles in transcriptional activation, and aberrant epigenetic changes are associated with oncogenesis. Lysine (K) acetyltransferases 5 (TIP60, also known as KAT5) is reportedly implicated in cancer development and maintenance, although its function in lung cancer remains controversial. Here we demonstrate that TIP60 knockdown in non-small cell lung cancer cell lines decreased tumor cell growth, migration, and invasion.
View Article and Find Full Text PDFBackground: Lung cancer cells overexpress mucin 1 (MUC1) and active subunit MUC1-CT. Although a peptide blocks MUC1 signalling, metabolites targeting MUC1 are not well studied. AICAR is a purine biosynthesis intermediate.
View Article and Find Full Text PDF() exon 20 insertion mutations account for a tenth of all mutations in lung cancers. An important unmet clinical need is the identification of EGFR exon 20 insertion mutants that can respond to multiple classes of approved EGFR-TKIs. We sought to characterize variants involving -D770 to -G770 position equivalence changes that structurally allow for response to irreversible 2nd generation EGFR-TKIs.
View Article and Find Full Text PDFNutritional intake impacts the human epigenome by directing epigenetic pathways in normal cell development via as yet unknown molecular mechanisms. Consequently, imbalance in the nutritional intake is able to dysregulate the epigenetic profile and drive cells towards malignant transformation. Here we present a novel epigenetic effect of the essential nutrient, NAD.
View Article and Find Full Text PDFCancer Sci
February 2022
Several lines of research suggest that Bcl-xL-mediated anti-apoptotic effects may contribute to the pathogenesis of myeloproliferative neoplasms driven by JAK2V617F and serve as therapeutic target. Here, we used a knock-in JAK2V617F mouse model and confirmed that Bcl-xL was overexpressed in erythroid progenitors. The myeloproliferative neoplasm (MPN)-induced phenotype in the peripheral blood by conditional knock-in of JAK2V617F was abrogated by conditional knockout of Bcl2l1, which presented anemia and thrombocytopenia independently of JAK2 mutation status.
View Article and Find Full Text PDFTumor heterogeneity underlies resistance to tyrosine kinase inhibitors (TKI) in lung cancers harboring mutations. Previous evidence suggested that subsets of preexisting resistant cells are selected by EGFR-TKI treatment, or alternatively, that diverse acquired resistance mechanisms emerge from drug-tolerant persister (DTP) cells. Many studies have used bulk tumor specimens or subcloned resistant cell lines to identify resistance mechanism.
View Article and Find Full Text PDFJTO Clin Res Rep
September 2020
Introduction: The EGFR-A763_Y764insFQEA is a unique exon 20 insertion mutation (~5% to 6% of exon 20 insertions), which, at the structural and enzyme kinetic level, more closely resembles EGFR tyrosine kinase inhibitor (TKI)- sensitizing mutants, such as EGFR exon 19 indels and L858R. A limited number of preclinical models and clinical reports have studied the response of this mutant to EGFR TKIs.
Methods: We used models of EGFR-A763_Y764insFQEA and more typical EGFR exon 20 insertion mutations to probe representative first- (gefitinib, erlotinib), second- (afatinib), third-generation (osimertinib), and in-development EGFR exon 20-specific (poziotinib, mobocertinib [TAK-788]) TKIs.
Background: Epidermal growth factor receptor (EGFR) exon 20 insertion mutations account for 10% of all EGFR mutations and are mostly insensitive to approved EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Novel EGFR-TKIs have been developed or repurposed for these mutants. A limited number of preclinical studies have detailed these EGFR-TKIs.
View Article and Find Full Text PDFThe apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) protein family members have cytidine deaminase activity and can induce cytosine to uracil transition in nucleic acid. The main function of APOBEC3 (A3) proteins is to trigger an innate immune response to viral infections. Recent reports have shown that several APOBEC family proteins such as A3B can induce somatic mutations into genomic DNA and thus promote cancer development.
View Article and Find Full Text PDFThe tumor suppressor transcription factor CCAAT enhancer-binding protein α (C/EBPα) expression is downregulated in myeloid leukemias and enhancement of C/EBPα expression induces granulocytic differentiation in leukemic cells. Previously we reported that Styryl quinazolinones induce myeloid differentiation in HL-60 cells by upregulating C/EBPα expression. To identify more potent molecule that can induce leukemic cell differentiation we synthesized and evaluated new series of styryl quinazolinones, ethynyl styryl quinazolinones, styryl quinolinones and thienopyrimidinones.
View Article and Find Full Text PDFThe CCAAT enhancer-binding protein α (C/EBPα) plays an important role in myeloid cell differentiation and in the enhancement of C/EBPα expression/activity, which can lead to granulocytic differentiation in acute myeloid leukemia (AML) cells. We found that styryl quinazolinones induce upregulation of C/EBPα expression, and thereby induce myeloid differentiation in human myeloid leukemia cell lines. We screened a series of active styryl quinazolinones and evaluated the structure⁻activity relationship (SAR) of these small molecules in inducing C/EBPα expression-thereby prompting the leukemic cells to differentiate.
View Article and Find Full Text PDFTissue factor initiates the extrinsic coagulation pathway by activating coagulation factor X to factor Xa, and factor V is a cofactor for the prothrombin activation by factor Xa. As factor Xa is known to promote the proliferation of mesangial cells in culture, the roles of the coagulation pathway and factor Xa were studied in an animal model of mesangioproliferative glomerulonephritis (MsPGN). MsPGN was induced in Wistar rats by an intravenous injection of anti-Thy 1.
View Article and Find Full Text PDFBackground: The high IgA (HIGA) strain of ddY mice is an inbred model of IgA nephropathy (IgAN), established by selective mating of outbred ddY mice. HIGA mice show high levels of serum IgA and glomerulonephritis with mesangial IgA deposition. To identify the genetic loci responsible for hyperserum IgA and glomerular IgA deposition in this strain, quantitative trait loci analysis was carried out.
View Article and Find Full Text PDFPolymerization of IgA has been suggested as one of the causes of mesangial deposition in IgA nephropathy. HIGA mice are an inbred model of IgA nephropathy, established by selective mating of ddY mice. This strain is characterized by a unique profile of the IgA molecule that is dominantly polymeric and has high serum levels with intense IgA deposition on the mesangium.
View Article and Find Full Text PDFBackground: We recently developed a ddY mouse strain having high IgA levels (HIGA) that provided a murine model of IgA nephropathy. We additionally showed that administration of interleukin (IL)-12, a potent helper T (Th)1-inducing cytokine, induced an apparent reduction in serum IgA levels. In the present study, we assessed the influence of IL-12 administration on several physicochemical characteristics of nephritogenic IgA molecules in HIGA mice.
View Article and Find Full Text PDF