Publications by authors named "Ikeda-Saito M"

uses IsdG and IsdI to convert heme into a mixture of staphylobilin isomers, 15-oxo-β-bilirubin and 5-oxo-δ-bilirubin, formaldehyde, and iron. The highly ruffled heme found in the heme-IsdI and IsdG complexes has been proposed to be responsible for the unique heme degradation products. We employed resonance Raman (RR) and electron paramagnetic resonance (EPR) spectroscopies to examine the coordination and electronic structures of heme bound to IsdG and IsdI.

View Article and Find Full Text PDF
Article Synopsis
  • - Proton pump inhibitors (PPIs) like omeprazole, pantoprazole, and lansoprazole are widely used and generally safe but can have long-term risks, including memory issues and certain diseases.
  • - These drugs can interact with transition metals, particularly iron ions, which may contribute to these health risks; however, this interaction hasn’t been thoroughly explored in water environments until now.
  • - Recent studies using absorption spectroscopy show that in a water/DMSO mixture, PPIs, especially omeprazole, exhibit strong binding affinities with Fe(III), suggesting potential metallocomplex formation that might explain their side effects.
View Article and Find Full Text PDF

Discovery of unidentified protein functions is of biological importance because it often provides new paradigms for many research areas. Mammalian heme oxygenase (HO) enzyme catalyzes the O-dependent degradation of heme into carbon monoxide (CO), iron, and biliverdin through numerous reaction intermediates. Here, we report that HS, a gaseous signaling molecule, is part of a novel reaction pathway that drastically alters HO's products, reaction mechanism, and catalytic properties.

View Article and Find Full Text PDF

Two-thiouridine (sU) at position 54 of transfer RNA (tRNA) is a posttranscriptional modification that enables thermophilic bacteria to survive in high-temperature environments. sU is produced by the combined action of two proteins, 2-thiouridine synthetase TtuA and 2-thiouridine synthesis sulfur carrier protein TtuB, which act as a sulfur (S) transfer enzyme and a ubiquitin-like S donor, respectively. Despite the accumulation of biochemical data in vivo, the enzymatic activity by TtuA/TtuB has rarely been observed in vitro, which has hindered examination of the molecular mechanism of S transfer.

View Article and Find Full Text PDF

Bach2 is a transcriptional repressor that plays an important role in the differentiation of T-cells and B-cells. Bach2 is functionally regulated by heme binding, and possesses five Cys-Pro Cys-Pro (CP)-motifs as the heme binding site. To reveal the molecular mechanism of heme binding by Bach2, the intrinsically disordered heme binding region (a.

View Article and Find Full Text PDF

The insertion of cobaloxime catalysts in the heme-binding pocket of heme oxygenase (HO) yields artificial hydrogenases active for H evolution in neutral aqueous solutions. These novel biohybrids have been purified and characterized by using UV/visible and EPR spectroscopy. These analyses revealed the presence of two distinct binding conformations, thereby providing the cobaloxime with hydrophobic and hydrophilic environments, respectively.

View Article and Find Full Text PDF

Bacterial pathogens must acquire host iron for survival and colonization. Because free iron is restricted in the host, numerous pathogens have evolved to overcome this limitation by using a family of monooxygenases that mediate the oxidative cleavage of heme into biliverdin, carbon monoxide, and iron. However, the etiological agent of tuberculosis, Mycobacterium tuberculosis, accomplishes this task without generating carbon monoxide, which potentially induces its latent state.

View Article and Find Full Text PDF

The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested.

View Article and Find Full Text PDF

The transcriptional repressor Bach2 regulates humoral and cellular immunity, including antibody class switching. It possesses a basic leucine zipper domain that mediates DNA binding. Heme inhibits the DNA-binding activity of Bach2 in vitro and induces the degradation of Bach2 in B cells.

View Article and Find Full Text PDF

Heme oxygenase catalyzes the degradation of heme to biliverdin, iron, and carbon monoxide. Here, we present crystal structures of the substrate-free, Fe(3+)-biliverdin-bound, and biliverdin-bound forms of HmuO, a heme oxygenase from Corynebacterium diphtheriae, refined to 1.80, 1.

View Article and Find Full Text PDF

IsdG and IsdI from Staphylococcus aureus are novel heme-degrading enzymes containing unusually nonplanar (ruffled) heme. While canonical heme-degrading enzymes, heme oxygenases, catalyze heme degradation coupled with the release of CO, in this study we demonstrate that the primary C1 product of the S. aureus enzymes is formaldehyde.

View Article and Find Full Text PDF

MhuD is an oxygen-dependent heme-degrading enzyme from Mycobacterium tuberculosis with high sequence similarity (∼45%) to Staphylococcus aureus IsdG and IsdI. Spectroscopic and mutagenesis studies indicate that the catalytically active 1:1 heme-MhuD complex has an active site structure similar to those of IsdG and IsdI, including the nonplanarity (ruffling) of the heme group bound to the enzyme. Distinct from the canonical heme degradation, we have found that the MhuD catalysis does not generate CO.

View Article and Find Full Text PDF

This article discusses the accuracy of X-ray structural studies of heme oxygenase (HO) in complex with an unstable intermediate, verdoheme. Heme degradation by HO proceeds through three successive steps of O(2) activation. The mechanism of the third step, the ring opening of verdoheme, has been the least understood.

View Article and Find Full Text PDF

HutZ, one of the crucial proteins of the iron uptake system in Vibrio cholerae, was purified, which binds to heme at a stoichiometry of 1 : 1. In the presence of ascorbic acid, the HutZ-bound heme degrades via the same intermediates observed in heme oxygenase, suggesting that HutZ works as a heme degradation enzyme.

View Article and Find Full Text PDF

Dysiherbaine (DH) and neodysiherbaine A (NDH) selectively bind and activate two kainate-type ionotropic glutamate receptors, GluK1 and GluK2. The ligand-binding domains of human GluK1 and GluK2 were crystallized as bound forms with a series of DH analogues including DH, NDH, 8-deoxy-NDH, 9-deoxy-NDH and 8,9-dideoxy-NDH (MSVIII-19), isolated from natural sources or prepared by total synthesis. Since the DH analogues exhibit a wide range of binding affinities and agonist efficacies, it follows that the detailed analysis of crystal structure would provide us with a significant opportunity to elucidate structural factors responsible for selective binding and some aspects of gating efficacy.

View Article and Find Full Text PDF

Heme binds to proteins to modulate their function, thereby functioning as a signaling molecule in a variety of biologic events. We found that heme bound to Bach2, a transcription factor essential for humoral immunity, including antibody class switch. Heme inhibited the DNA binding activity of Bach2 in vitro and reduced its half-life in B cells.

View Article and Find Full Text PDF

The least understood mechanism during heme degradation by the enzyme heme oxygenase (HO) is the third step of ring opening of verdoheme to biliverdin, a process which maintains iron homeostasis. In response to this mechanistic uncertainty, we launched a combined study of X-ray crystallography and theoretical QM/MM calculations, designed to elucidate the mechanism. The air-sensitive ferrous verdoheme complex of HmuO, a heme oxygenase from Corynebacterium diphtheriae, was crystallized under anaerobic conditions.

View Article and Find Full Text PDF

Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the heme oxygenase from the pathogenic bacterium Corynebacterium diphtheriae, HmuO. The chemical shifts for the conserved portion of the structure are assessed as references for the dipolar shifts needed to determine the orientation of the paramagnetic susceptibility tensor, chi, in paramagnetic substrate complexes of HmuO. It is shown that the chemical shifts for the structurally conserved portion of substrate-free HmuO serve as excellent references for residues with only small to moderate sized dipolar shifts in the cyanide-inhibited substrate complex of HmuO, yielding an orientation of chi that is essentially the same as conventionally obtained from large dipolar shifts based on empirical estimates of the diamagnetic reference.

View Article and Find Full Text PDF
Article Synopsis
  • Heme oxygenase (HO) catalyzes the conversion of heme into biliverdin, carbon monoxide (CO), and free iron through three distinct oxygenation steps, using the heme itself for these reactions.
  • The first oxygenation step involves a unique process of hydroxylation at the alpha-meso-carbon atom, differing significantly from other enzymes like cytochrome P450, with evidence suggesting the reactive intermediate is FeOOH.
  • The article discusses key findings related to the importance of water molecules in these reactions and highlights ongoing efforts to develop inhibitors targeting the specific structures involved in HO catalysis.
View Article and Find Full Text PDF

Heme oxygenase (HO) is an enzyme that catalyzes the regiospecific conversion of heme to biliverdin IXalpha, CO, and free iron. In mammals, HO has a variety of physiological functions, including heme catabolism, iron homeostasis, antioxidant defense, cellular signaling, and O(2) sensing. The enzyme is also found in plants (producing light-harvesting pigments) and in some pathogenic bacteria, where it acquires iron from the host heme.

View Article and Find Full Text PDF

Corynebacterium diphteriae employs the response regulator, ChrA, and the sensor kinase, ChrS, of a two-component signal transduction system to utilize host heme iron. Although ChrS is predicted to encode a heme sensor, the sensing mechanism remains to be characterized. In this report, ChrS expressed in Eshcherichia coli membranes was solubilized and purified using decylmaltoside.

View Article and Find Full Text PDF

The nature of the Fe-O2 bonding in oxy-myoglobin was probed by theoretical calculations: (a) QM/MM (hybrid quantum mechanical/molecular mechanical) calculations using DFT/MM and CASSCF/MM methods and (b) gas-phase calculations using DFT (density functional theory) and CASSCF (complete active space self-consistent field) methods. Within the protein, the O2 is hydrogen bonded by His64 and the complex feels the bulk polarity of the protein. Removal of the protein causes major changes in the complex.

View Article and Find Full Text PDF