Publications by authors named "Ikechi Ozoemelam"

. To demonstrate that complete cone beam CT (CBCT) scans from both MV-energy and kV-energy LINAC sources can reduce metal artifacts in radiotherapy guidance, while maintaining standard-of-care x-ray doses levels..

View Article and Find Full Text PDF

Background: The incorporation of multi-energy capabilities into radiotherapy flat-panel detectors offers advantages including enhanced soft tissue visualization by reduction of signal from overlapping anatomy such as bone in 2D image projections; creation of virtual monoenergetic images for 3D contrast enhancement, metal artefact reduction and direct acquisition of relative electron density. A novel dual-layer on-board imager offering dual energy processing capabilities is being designed. As opposed to other dual-energy implementation techniques which require separate acquisition with two different x-ray spectra, the dual-layer detector design enables simultaneous acquisition of high and low energy images with a single exposure.

View Article and Find Full Text PDF

Several techniques are under development for image-guidance in particle therapy. Positron (β) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β-emitters generated projectile fragmentation.

View Article and Find Full Text PDF

The applicability extent of hadron therapy for tumor treatment is currently limited by the lack of reliable online monitoring techniques. An active topic of investigation is the research of monitoring systems based on the detection of secondary radiation produced during treatment. MACACO, a multi-layer Compton camera based on LaBr scintillator crystals and SiPMs, is being developed at IFIC-Valencia for this purpose.

View Article and Find Full Text PDF

Compared to photon therapy, proton therapy allows a better conformation of the dose to the tumor volume with reduced radiation dose to co-irradiated tissues. In vivo verification techniques including positron emission tomography (PET) have been proposed as quality assurance tools to mitigate proton range uncertainties. Detection of differences between planned and actual dose delivery on a short timescale provides a fast trigger for corrective actions.

View Article and Find Full Text PDF

Therapy with helium ions is currently receiving significantly increasing interest because helium ions have a sharper penumbra than protons and undergo less fragmentation than carbon ions and thus require less complicated dose calculations. For any ion of interest in hadron therapy, the accuracy of dose delivery is limited by range uncertainties. This has led to efforts by several groups to develop in vivo verification techniques, including positron emission tomography (PET), for monitoring of the dose delivery.

View Article and Find Full Text PDF