We developed a novel DNA aptamer, D8#24S1, which specifically recognizes mertansine (DM1), the cytotoxic payload of the antibody-drug conjugate (ADC) trastuzumab emtansine (T-DM1), and applied it for T-DM1 analysis. D8#24S1 was obtained through SELEX and was shown to specifically recognize DM1 with high affinity (dissociation constant, K = 84.2 nM).
View Article and Find Full Text PDFThe SARS-CoV-2 pandemic has challenged more scientists to detect viruses and to visualize virus-containing spots for diagnosis and infection control; however, detection principles of commercially available technologies are not optimal for visualization. Here, a convenient and universal homogeneous detection platform named proximity-unlocked luminescence by sequential enzymatic reactions from antibody and antibody/aptamer (PULSERAA) is developed. This is designed so that the signal appears only when the donor and acceptor are in proximity on the viral surface.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
Antibody-enzyme complexes (AECs) are ideal for immunosensing. Although AECs using antibody fragments can be produced by bacterial hosts, their low affinity limits their sensing applications. We have improved the affinity of AECs by combining two antibodies using Catcher/Tag systems; however, it requires multiple antibodies and an enzyme production process.
View Article and Find Full Text PDFWe developed an aptamer-based fluorescence resonance energy transfer (FRET) assay capable of recognizing therapeutic monoclonal antibody bevacizumab and rapidly quantifying its concentration with just one mixing step. In this assay, two fluorescent dyes (fluorescein and tetramethylrhodamine) labeled aptamers bind to two Fab regions on bevacizumab, and FRET fluorescence is observed when both dyes come into close proximity. We optimized this assay in three different formats, catering to a wide range of analytical needs.
View Article and Find Full Text PDFWe introduce a versatile method to convert NAD or NADP -dependent dehydrogenases into quasi-direct electron transfer (quasi-DET)-type dehydrogenases, by modifying with a mediator on the enzyme surface toward the development of 2.5 generation enzymatic sensors. In this study, we use β-hydroxybutyrate (BHB) dehydrogenase (BHBDh) from Alcaligenes faecalis (AfBHBDh) as a representative NAD or NADP -dependent dehydrogenase.
View Article and Find Full Text PDFAlthough IgG-free immunosensors are in high demand owing to ethical concerns, the development of convenient immunosensors that alternatively integrate recombinantly produced antibody fragments, such as single-chain variable fragments (scFvs), remains challenging. The low affinity of antibody fragments, unlike IgG, caused by monovalent binding to targets often leads to decreased sensitivity. We improved the affinity owing to the bivalent effect by fabricating a bivalent antibody-enzyme complex (AEC) composed of two scFvs and a single glucose dehydrogenase, and developed a rapid and convenient scFv-employed electrochemical detection system for the C-reactive protein (CRP), which is a homopentameric protein biomarker of systemic inflammation.
View Article and Find Full Text PDFAmyloidosis is characterized by the abnormal accumulation of amyloid proteins. The causative proteins aggregate from monomers to oligomers and fibrils, among which some intermediate oligomers are considered as major toxins. Cytotoxic oligomers are generated not only by aggregation but also via fibril disaggregation.
View Article and Find Full Text PDFDNA-protein complexes are attractive components with broad applications in various research fields, such as DNA aptamer-enzyme complexes as biosensing elements. However, noncovalent DNA-protein complexes often decrease detection sensitivity because they are highly susceptible to environmental conditions. In this study, we developed a versatile DNA-protein covalent-linking patch (D-Pclip) for fabricating covalent and stoichiometric DNA-protein complexes.
View Article and Find Full Text PDFThis study describes the observation of the transformation of monomeric amyloid β (Aβ42) into oligomers in a lipid membrane utilizing a lipid bilayer system for electrophysiological measurement. The relevance of oligomers and protofibrils in Alzheimer's disease (AD) is underscored given their significant neurotoxicity. By closely monitoring the shift of Aβ42 from its monomeric state to forming oligomeric channels in phospholipid membranes, we noted that this transformation transpired within a 2-h frame.
View Article and Find Full Text PDFA simple and sensitive homogeneous protein detection system is required for the early detection of biomarkers. Thermo-responsive magnetic particles (TM) have already been developed to achieve easy bound/free separation at the homogeneous protein detection system, but they are still limited owing to the requirement of secondary antibodies and negatively charged polymers, and it is challenging to control the TM aggregation behavior because of the size of the TM. Therefore, at new method to control TM aggregation behavior that is simple, easy, and highly sensitive is required.
View Article and Find Full Text PDFWe report on the development of a versatile and accurate bioanalytical method for bevacizumab using a pretreatment method combining affinity purification with anti-idiotypic DNA aptamers and centrifugal ultrafiltration concentration, followed by liquid chromatography (LC)-fluorescence analysis. An affinity purification method using Sepharose beads as an affinity support removed immunoglobulin G and a large amount of coexisting substances in the serum sample. Purified bevacizumab was separated as a single peak by conventional LC and detected fluorometrically, showing good linearity (R = 0.
View Article and Find Full Text PDFThrombin-binding aptamer (TBA), which forms a G-quadruplex (G4) structure with anti-parallel topology, interacts with thrombin to inhibit its enzymatic activity. Here we show that the G4-topology-altering ligand L2H2-2M2EA-6LCO (6LCO) changes the anti-parallel topology of TBA G4 to the parallel topology, thereby abrogating the thrombin-inhibitory activity of TBA. This finding suggests that G4 ligands that alter topology may be promising drug candidates for diseases involving G4-binding proteins.
View Article and Find Full Text PDFChlorhexidine (CHD) is a cationic biocide used ubiquitously in healthcare settings. , an important pathogen of the catheterized urinary tract, and isolates of this species are often described as "resistant" to CHD-containing products used for catheter infection control. To identify the mechanisms underlying reduced CHD susceptibility in , we subjected the CHD tolerant clinical isolate RS47 to random transposon mutagenesis and screened for mutants with reduced CHD minimum inhibitory concentrations (MICs).
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAbs) are currently the most effective medicines for a wide range of diseases. Therefore, it is expected that easy and rapid measurement of mAbs will be required to improve their efficacy. Here, we report an anti-idiotype aptamer-based electrochemical sensor for a humanized therapeutic antibody, bevacizumab, based on square wave voltammetry (SWV).
View Article and Find Full Text PDFThe electrochemical enzyme sensors based on direct electron transfer (DET)-type oxidoreductase-based enzymes are ideal for continuous and in vivo monitoring. However, the number and types of DET-type oxidoreductases are limited. The aim of this research is the development of a versatile method to create a DET-type oxidoreductase complex based on the SpyCatcher/SpyTag technique by preparing SpyCatcher-fused heme and SpyTag-fused non-DET-type oxidoreductases, and by the in vitro formation of DET-type oxidoreductase complexes.
View Article and Find Full Text PDFMammary tumor-associated amyloidosis (MTAA) in dogs is characterized by amyloid deposition in the stroma of mammary adenoma or carcinoma; however, the amyloid precursor protein remains unknown. We attempted to identify an amyloid precursor protein and elucidated its etiology by characterizing 5 cases of canine MTAA. Proteomic analyses of amyloid extracts from formalin-fixed paraffin-embedded specimens revealed α-S1-casein (CASA1) as a prime candidate and showed the N-terminal truncation of canine CASA1.
View Article and Find Full Text PDFAmyloid β (Aβ) oligomers play a key role in the progression of Alzheimer's disease (AD). Multiple forms of Aβ assemblies have been identified by in vitro and in vivo analyses; however, it is uncertain which oligomer is highly neurotoxic. Thus, understanding the pathogenesis of AD by detecting toxic Aβ oligomers is crucial.
View Article and Find Full Text PDFl-Lactate oxidase (LOx) is a flavin mononucleotide (FMN)-dependent triose phosphate isomerase (TIM) barrel fold enzyme that catalyzes the oxidation of l-lactate using oxygen as a primary electron acceptor. Although reductive half-reaction mechanism of LOx has been studied by structure-based kinetic studies, oxidative half-reaction and substrate/product-inhibition mechanisms were yet to be elucidated. In this study, the structure and enzymatic properties of wild-type and mutant LOxs from Enterococcus hirae (EhLOx) were investigated.
View Article and Find Full Text PDFWe previously reported that the formation of guanine-quadruplex (G4) structures provides phosphodiester oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine (CpG ODNs) with higher nuclease resistance and cellular uptake, thereby increasing their immunostimulation efficiency through TLR9 activation. CpG ODNs forming G4 structures (G4 CpG ODNs) are thus potential vaccine adjuvants against infectious diseases. However, the G4 structure changes topology depending on the surrounding environment.
View Article and Find Full Text PDFCytosine methylation within the 5'-C-phosphate-G-3' sequence of nucleotides (called CpG methylation) is a well-known epigenetic modification of genomic DNA that plays an important role in gene expression and development. CpG methylation is likely to be altered in the CpG islands. CpG islands are rich in cytosine, forming a structure called the i-motif via cytosine-cytosine hydrogen bonding.
View Article and Find Full Text PDFBackground: While continuous glucose monitoring (CGM) systems allow precise and real-time blood glucose control, current electrochemicalbased CGM technologies inherently harbor enzyme instability issues. The direct electron transfer (DET) type open circuit potential (OCP) based enzyme sensing principle can minimize the catalytic turnover of the enzyme reaction, thereby providing longer-term operational stability in future CGM glucose sensors.
Method: DET-type OCP based glucose sensors were constructed using gold disk electrodes with glucose dehydrogenase capable of DET which was immobilized using a self-assembled monolayer (SAM).
Electrochemical aptamer-based biosensors (E-ABs) are attractive candidates for use in biomarker detection systems due to their sensitivity, rapid response, and design flexibility. There are only several redox probes that were employed previously for this application, and a combination of redox probes affords some advantages in target detection. Thus, it would be advantageous to study new redox probes in an E-AB system.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAbs) are successful biomedicines; however, evaluation of their pharmacokinetics and pharmacodynamics demands highly specific discrimination from human immunoglobulin G naturally present in the blood. Here, we developed a novel anti-idiotype aptamer (termed A14#1) with extraordinary specificity against the anti-vascular endothelial growth factor therapeutic mAb, bevacizumab. Structural analysis of the antibody-aptamer complex showed that several bases of A14#1 recognized only the complementarity determining region (CDR) of bevacizumab, thereby contributing to its extraordinary specificity.
View Article and Find Full Text PDF