Publications by authors named "Ijaz M Qureshi"

Wearable electronics capable of recording and transmitting biosignals can provide convenient and pervasive health monitoring. A typical EEG recording produces large amount of data. Conventional compression methods cannot compress date below Nyquist rate, thus resulting in large amount of data even after compression.

View Article and Find Full Text PDF

Compressive sensing (CS) offers compression of data below the Nyquist rate, making it an attractive solution in the field of medical imaging, and has been extensively used for ultrasound (US) compression and sparse recovery. In practice, CS offers a reduction in data sensing, transmission, and storage. Compressive sensing relies on the sparsity of data; i.

View Article and Find Full Text PDF

The application of compressed sensing (CS) to biomedical imaging is sensational since it permits a rationally accurate reconstruction of images by exploiting the image sparsity. The quality of CS reconstruction methods largely depends on the use of various sparsifying transforms, such as wavelets, curvelets or total variation (TV), to recover MR images. As per recently developed mathematical concepts of CS, the biomedical images with sparse representation can be recovered from randomly undersampled data, provided that an appropriate nonlinear recovery method is used.

View Article and Find Full Text PDF

Transformed domain sparsity of Magnetic Resonance Imaging (MRI) has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS) theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected.

View Article and Find Full Text PDF

In cognitive radio communication, spectrum sensing plays a vital role in sensing the existence of the primary user (PU). The sensing performance is badly affected by fading and shadowing in case of single secondary user(SU). To overcome this issue, cooperative spectrum sensing (CSS) is proposed.

View Article and Find Full Text PDF

Respiratory motion during Magnetic Resonance (MR) acquisition causes strong blurring artifacts in the reconstructed images. These artifacts become more pronounced when used with the fast imaging reconstruction techniques like compressed sensing (CS). Recently, an MR reconstruction technique has been done with the help of compressed sensing (CS), to provide good quality sparse images from the highly under-sampled k-space data.

View Article and Find Full Text PDF

In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE).

View Article and Find Full Text PDF

A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64.

View Article and Find Full Text PDF

Cooperative communication is regarded as a key technology in wireless networks, including cognitive radio networks (CRNs), which increases the diversity order of the signal to combat the unfavorable effects of the fading channels, by allowing distributed terminals to collaborate through sophisticated signal processing. Underlay CRNs have strict interference constraints towards the secondary users (SUs) active in the frequency band of the primary users (PUs), which limits their transmit power and their coverage area. Relay selection offers a potential solution to the challenges faced by underlay networks, by selecting either single best relay or a subset of potential relay set under different design requirements and assumptions.

View Article and Find Full Text PDF

Hybrid evolutionary computational technique is developed to jointly estimate the amplitude, frequency, range, and 2D direction of arrival (elevation and azimuth angles) of near-field sources impinging on centrosymmetric cross array. Specifically, genetic algorithm is used as a global optimizer, whereas pattern search and interior point algorithms are employed as rapid local search optimizers. For this, a new multiobjective fitness function is constructed, which is the combination of mean square error and correlation between the normalized desired and estimated vectors.

View Article and Find Full Text PDF

We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE) and its boundary conditions is formulated.

View Article and Find Full Text PDF

A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks.

View Article and Find Full Text PDF