Artificial intelligence (AI) is the use of mathematical algorithms to mimic human cognitive abilities and to address difficult healthcare challenges including complex biological abnormalities like cancer. The exponential growth of AI in the last decade is evidenced to be the potential platform for optimal decision-making by super-intelligence, where the human mind is limited to process huge data in a narrow time range. Cancer is a complex and multifaced disorder with thousands of genetic and epigenetic variations.
View Article and Find Full Text PDFCarnitine is known for its essential role in intermediary metabolism. In vitro studies suggest that its antioxidant and anti-inflammatory properties are potentially beneficial toward cancer prevention. This study tested effects of carnitine on the development of colon cancer in vivo using 2 murine models: azoxymethane (AOM) treatment as a model of carcinogen-induced colon cancer and a genetically induced model using Apc (Min/+) mice.
View Article and Find Full Text PDFMaternofetal transport of l-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that l-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent K(m) = 11.09 +/- 1.
View Article and Find Full Text PDFThe juvenile visceral steatosis (jvs) mouse, having a mutation in the carnitine transporter gene Octn2, is a model of primary systemic carnitine deficiency in humans (SCD, OMIM 212140). Like humans with SCD, homozygous jvs -/- mice have hepatic and cardiac steatoses, reduced plasma and tissue carnitines, and increased urinary carnitine clearance. Because symptomatic heterozygotes have been reported for some fatty acid oxidation disorders, including SCD, we compared the jvs heterozygotes to normal control mice.
View Article and Find Full Text PDFWe characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na(+)-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na(+)-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine.
View Article and Find Full Text PDF