Publications by authors named "Ihsen Youssef"

Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid β (Aβ) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aβ-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22).

View Article and Find Full Text PDF

Background: Masitinib is a selective tyrosine kinase inhibitor that modulates mast cells activity. A previous phase II study reported a cognitive effect of masitinib in patients with Alzheimer's disease.

Objective: We aimed to shed light on the mode of action of masitinib in Alzheimer's disease.

View Article and Find Full Text PDF

Current evidence suggests dementia and pathology in Alzheimer's Disease (AD) are both dependent and independent of amyloid processing and can be induced by multiple 'hits' on vital neuronal functions. Type 2 diabetes (T2D) poses the most important risk factor for developing AD after ageing and dysfunctional IR/PI3K/Akt signalling is a major contributor in both diseases. We developed a model of T2D, coupling subdiabetogenic doses of streptozotocin (STZ) with a human junk food (HJF) diet to more closely mimic the human condition.

View Article and Find Full Text PDF

Extracellular aggregates of amyloid β (Aβ) peptides, which are characteristic of Alzheimer's disease (AD), act as an essential trigger for glial cell activation and the release of ATP, leading to the stimulation of purinergic receptors, especially the P2X7 receptor (P2X7R). However, the involvement of P2X7R in the development of AD is still ill-defined regarding the dual properties of this receptor. Particularly, P2X7R activates the NLRP3 inflammasome leading to the release of the pro-inflammatory cytokine, IL-1β; however, P2X7R also induces cleavage of the amyloid precursor protein generating Aβ peptides or the neuroprotective fragment sAPPα.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with a progressive loss of synapses and neurons. Studies in animal models indicate that morphological alterations of dendritic spines precede synapse loss, increasing the proportion of large and short ("stubby") spines. Whether similar alterations occur in human patients, and what their functional consequences could be, is not known.

View Article and Find Full Text PDF

Detection of intracerebral targets with imaging probes is challenging due to the non-permissive nature of blood-brain barrier (BBB). The present work describes two novel single-domain antibodies (VHHs or nanobodies) that specifically recognize extracellular amyloid deposits and intracellular tau neurofibrillary tangles, the two core lesions of Alzheimer's disease (AD). Following intravenous administration in transgenic mouse models of AD, in vivo real-time two-photon microscopy showed gradual extravasation of the VHHs across the BBB, diffusion in the parenchyma and labeling of amyloid deposits and neurofibrillary tangles.

View Article and Find Full Text PDF

Amyloid-β (Aβ) oligomers are the suspected culprit as initiators of Alzheimer's disease (AD). However, their diffusion in the brain remains unknown. Here, we studied Aβ oligomers' dissemination and evaluated their in vivo toxicity.

View Article and Find Full Text PDF

Unlabelled: Accumulation of amyloid peptide (Aβ) in senile plaques is a hallmark lesion of Alzheimer disease (AD). The design of molecules able to target the amyloid pathology in tissue is receiving increasing attention, both for diagnostic and for therapeutic purposes. Curcumin is a fluorescent molecule with high affinity for the Aβ peptide but its low solubility limits its clinical use.

View Article and Find Full Text PDF

Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aβ oligomers activate cytosolic phospholipase A(2) (cPLA(2)), which specifically releases arachidonic acid from membrane phospholipids. We here observed that cPLA(2) gene inactivation prevented the alterations of cognitive abilities and the reduction of hippocampal synaptic markers levels noticed upon a single intracerebroventricular injection of Aβ oligomers in wild type mice.

View Article and Find Full Text PDF

The development of novel therapeutic strategies for Alzheimer's disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta (Abeta) oligomer-induced synaptic damages and associated cognitive impairments that typify AD.

View Article and Find Full Text PDF

In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble beta-amyloid (Abeta) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Abeta oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration.

View Article and Find Full Text PDF

N-terminal-truncated forms of amyloid-beta (A beta) peptide have been recently suggested to play a pivotal role early in Alzheimer's disease (AD). Among them, A beta 3(pE)-42 peptide, starting with pyroglutamyl at residue Glu-3, is considered as the predominant A beta species in AD plaques and pre-amyloid lesions. Its abundance is reported to be directly proportional to the severity of the clinical phenotype.

View Article and Find Full Text PDF

Recent data have revealed that soluble oligomeric amyloid-beta peptide (Abeta) may be the proximate effectors of neuronal injuries and death in Alzheimer's disease (AD) by unknown mechanisms. Consistently, we recently demonstrated the critical role of a redox-sensitive cytosolic calcium-dependent phospholipase A2 (cPLA2)-arachidonic acid (AA) pathway in Abeta oligomer-induced cell death. According to the involvement of oxidative stress and polyunsaturated fatty acids like AA in the regulation of sphingomyelinase (SMase) activity, the present study underlines the role of SMases in soluble Abeta-induced apoptosis.

View Article and Find Full Text PDF

A growing body of evidence supports the notion that soluble oligomers of amyloid-beta (Abeta) peptide interact with the neuronal plasma membrane, leading to cell injury and inducing death-signalling pathways that could account for the increased neurodegeneration occurring in Alzheimer's disease (AD). Docosahexaenoic acid (DHA, C22:6, n-3) is an essential polyunsaturated fatty acid in the CNS and has been shown in several epidemiological and in vivo studies to have protective effects against AD and cognitive alterations. However, the molecular mechanisms involved remain unknown.

View Article and Find Full Text PDF