Inflammatory bowel disease (IBD) patients are at increased risk of developing colorectal cancer (CRC). Vitamin D (vD) induces NOD2 gene expression, enhancing immunity, while deficiency impairs intestinal epithelial integrity, increasing inflammation. This study investigated the effect of vD on CRC in colitis, and if preventive benefits are mediated via NOD2.
View Article and Find Full Text PDFButyrate is a potent anticarcinogenic compound against colon cancer cells in vitro. However, its rapid metabolism is hypothesized to limit its anticancer benefits in colonic epithelial cells. Carnitine, a potent antioxidant, is essential to fatty acid oxidation.
View Article and Find Full Text PDFCarnitine is known for its essential role in intermediary metabolism. In vitro studies suggest that its antioxidant and anti-inflammatory properties are potentially beneficial toward cancer prevention. This study tested effects of carnitine on the development of colon cancer in vivo using 2 murine models: azoxymethane (AOM) treatment as a model of carcinogen-induced colon cancer and a genetically induced model using Apc (Min/+) mice.
View Article and Find Full Text PDFBackground: The IBD5 locus is a genetic risk factor for IBD, particularly Crohn's Disease, coding for the organic cation/carnitine transporters (OCTN1 and 2). Two variants of OCTN are associated with susceptibility to Crohn's Disease. Modified transport of carnitine in vitro has been reported for a polymorphism of OCTN1.
View Article and Find Full Text PDFMaternofetal transport of l-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that l-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent K(m) = 11.09 +/- 1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2003
l-Carnitine is derived both from dietary sources and biosynthesis. Dietary carnitine is absorbed in the small intestine and then distributed to other organs. Previous studies using Caco-2 cells demonstrated that the transport of l-carnitine in the intestine involves a carrier-mediated system.
View Article and Find Full Text PDFThe juvenile visceral steatosis (jvs) mouse, having a mutation in the carnitine transporter gene Octn2, is a model of primary systemic carnitine deficiency in humans (SCD, OMIM 212140). Like humans with SCD, homozygous jvs -/- mice have hepatic and cardiac steatoses, reduced plasma and tissue carnitines, and increased urinary carnitine clearance. Because symptomatic heterozygotes have been reported for some fatty acid oxidation disorders, including SCD, we compared the jvs heterozygotes to normal control mice.
View Article and Find Full Text PDF