Bleeder entries are critically important to longwall mining for the moving of supplies, personnel, and the dilution of mine air contaminants. By design, these entries must stay open for many years for ventilation. Standing supports in moderate cover bleeder entries were observed, numerically modeled, and instrumented by researchers at the National Institute for Occupational Safety and Health (NIOSH).
View Article and Find Full Text PDFEstimating the overall floor stability in a coal mine using deterministic methods which require complex engineering properties of floor strata is desirable, but generally it is impractical due to the difficulty of gathering essential input data. However, applying a quantitative methodology to describe floor quality with a single number provides a practical estimate for preliminary assessment of floor stability. The coal mine floor rating (CMFR) system, developed by the University of New South Wales (UNSW), is a rock-mass classification system that provides an indicator for the competence of floor strata.
View Article and Find Full Text PDFInt J Min Sci Technol
January 2020
The Analysis of Retreat Mining Pillar Stability (ARMPS) program was developed by the National Institute for Occupational Safety and Health (NIOSH) to help the United States coal mining industry to design safe retreat room-and-pillar panels. ARMPS calculates the magnitude of the in-situ and mining-induced loads by using geometrical computations and empirical rules. In particular, the program uses the "abutment angle" concept in calculating the magnitude of the abutment load on pillars adjacent to a gob.
View Article and Find Full Text PDFInt J Min Sci Technol
January 2018
Several questions have emerged in relation to deep cover bleeder entry performance and support loading: how well do current modeling procedures calculate the rear abutment extent and loading? Does an improved understanding of the rear abutment extent warrant a change in standing support in bleeder entries? To help answer these questions and to determine the current utilization of standing support in bleeder entries, four bleeder entries at varying distances from the startup room were instrumented, observed, and numerically modeled. This paper details observations made by NIOSH researchers in the bleeder entries of a deep cover longwall panel-specifically data collected from instrumented pumpable cribs, observations of the conditions of the entries, and numerical modeling of the bleeder entries during longwall extraction. The primary focus was on the extent and magnitude of the abutment loading experienced by the standing support.
View Article and Find Full Text PDFIn this paper, the advantage of using numerical models with the strength reduction method (SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated. A coal mine under variable topography from the Central Appalachian region is used as a case study. At this mine, unexpected roof conditions were encountered during development below previously mined panels.
View Article and Find Full Text PDF