Lactate dehydrogenase-A (LDHA) is the major isoform of lactate dehydrogenases (LDH) that is overexpressed and linked to poor survival in pancreatic ductal adenocarcinoma (PDAC). Despite some progress, current LDH inhibitors have poor structural and physicochemical properties or exhibit unfavorable pharmacokinetics that have hampered their development. The present study reports the synthesis and biological evaluation of a novel class of LDHA inhibitors comprising a succinic acid monoamide motif.
View Article and Find Full Text PDFNephrotoxicity is a significant concern during the development of new drugs or when assessing the safety of chemicals in consumer products. Traditional methods for testing nephrotoxicity involve animal models or 2D in vitro cell cultures, the latter of which lack the complexity and functionality of the human kidney. 3D in vitro models are created by culturing human primary kidney cells derived from urine in a 3D microenvironment that mimics the fluid shear stresses of the kidney.
View Article and Find Full Text PDFIt is imperative to explore the gigantic available chemical space to identify new scaffolds for drug lead discovery. Identifying potent hits from virtual screening of large chemical databases is challenging and computationally demanding. Rather than the traditional two-dimensional (2D)/three-dimensional (3D) approaches on smaller chemical libraries of a few hundred thousand compounds, we screened a ZINC library of 15 million compounds using multiple computational methods.
View Article and Find Full Text PDFDespite being widely applied in drug development, existing models are not suitable to assess chronic mitochondrial toxicity. A novel assay system mimicking in vivo microenvironment for this purpose is urgently needed. The goal of this study is to establish a 3D cell platform as a reliable, sensitive, cost-efficient, and high-throughput assay to predict drug-induced mitochondrial toxicity.
View Article and Find Full Text PDFMitochondrial toxicity (Mito-Tox) risk has increased due to the administration of several classes of drugs, particularly some life-long antiretroviral drugs for HIV individuals. However, no suitable in vitro assays are available to test long-term Mito-Tox (≥4 weeks). The goal of this study is to develop a 3D spheroid system of human primary urine-derived stem cells (USC) for the prediction of drug-induced delayed Mito-Tox.
View Article and Find Full Text PDFPost-Traumatic Stress Disorder (PTSD) is a debilitating mental health disorder that occurs after exposure to a traumatic event. Patients with comorbid chronic pain experience affective distress, worse quality of life, and poorer responses to treatments for pain or PTSD than those with either condition alone. FDA-approved PTSD treatments are often ineffective analgesics, requiring additional drugs to treat co-morbid symptoms.
View Article and Find Full Text PDFThe design, synthesis, and biological evaluation of a series novel N1‑methyl pyrazolo[4,3-d]pyrimidines as inhibitors of tubulin polymerization and colchicine binding were described here. Synthesis of target compounds involved alkylation of the pyrazolo scaffold, which afforded two regioisomers. These were separated, characterized and identified with H NMR and NOESY spectroscopy.
View Article and Find Full Text PDFThe efficacy of quinazoline-based antiglioma agents has been attributed to their effects on microtubule dynamics. The design, synthesis and biological evaluation of quinazolines as potent inhibitors of multiple intracellular targets, including microtubules and multiple RTKs, is described. In addition to the known ability of quinazolines 1 and 2 to cause microtubule depolymerization, they were found to be low nanomolar inhibitors of EGFR, VEGFR-2 and PDGFR-β.
View Article and Find Full Text PDFA series of methoxy naphthyl substituted cyclopenta[d]pyrimidine compounds, 4-10, were designed and synthesized to study the influence of the 3-D conformation on microtubule depolymerizing and antiproliferative activities. NOESY studies with the N,2-dimethyl-N-(6'-methoxynaphthyl-1'-amino)-cyclopenta[d]pyrimidin-4-amine (4) showed hindered rotation of the naphthyl ring around the cyclopenta[d]pyrimidine scaffold. In contrast, NOESY studies with N,2-dimethyl-N-(5'-methoxynaphthyl-2'-amino)-cyclopenta[d]pyrimidin-4-amine (5) showed free rotation of the naphthyl ring around the cyclopenta[d]pyrimidine scaffold.
View Article and Find Full Text PDFAn assortment of organic material can leach from lignite (low-rank coal) in water, and the water-soluble fraction from lignite has been associated with adverse health effects in areas of the Balkans. Recent efforts have been made to evaluate this hypothesis in other areas where lignite is in contact with groundwater like in the U.S.
View Article and Find Full Text PDFThe design, synthesis and biological evaluation of 4-substituted 5-methyl-furo[2,3-d]pyrimidines is described. The Ullmann coupling of 5-methyl-furo[2,3-d]pyrimidine with aryl iodides was successfully optimized to synthesize these analogs. Compounds 6-10 showed single-digit nanomolar inhibition of EGFR kinase.
View Article and Find Full Text PDFAndrogen ablation is the standard of care prescribed to patients with advanced or metastatic prostate cancer (PCa) to slow down disease progression. Unfortunately, a majority of PCa patients under androgen ablation progress to castration-resistant prostate cancer (CRPC). Several mechanisms including alternative intra-prostatic androgen production and androgen-independent androgen receptor (AR) activation have been proposed for CRPC progression.
View Article and Find Full Text PDFHigh-grade gliomas such as glioblastomas (GBM) present a deadly prognosis following diagnosis and very few effective treatment options. Here, we investigate if the small molecule AG488 can be an effective therapy against GBM with both anti-angiogenic as well as an anti-microtubule inhibiting modalities, using a human G55 glioma xenograft model in nude mice. From studies, we report that AG488 incubation reduced cell viability in G55 and HMEC-1 cells more so than TMZ treatment, and AG488 treatment also decreased cell viability in normal astrocytes, but not as much as for G55 cells (p<0.
View Article and Find Full Text PDFBackground: Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that primarily affects premature infants. It is characterized by inflammation and leukocyte infiltration that can progress to intestinal necrosis, perforation, systemic inflammatory response, and death. In this study, we examined the effect of FLLL32, a curcumin analog, on an NEC-like neonatal intestinal injury model.
View Article and Find Full Text PDFIn an effort to optimize the structural requirements for combined cytostatic and cytotoxic effects in single agents, a series of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines 3-7 were synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs) as well as thymidylate synthase (TS). The synthesis of these compounds involved the nucleophilic displacement of the common intermediate 5-bromo/5-chloro-9H-pyrimido[4,5-b]indole-2,4-diamine with appropriate aryl thiols. A novel four step synthetic scheme to the common intermediate was developed which is more efficient relative to the previously reported six-step sequence.
View Article and Find Full Text PDFCancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization.
View Article and Find Full Text PDFThe utility of cytostatic antiangiogenic agents (AA) in cancer chemotherapy lies in their combination with cytotoxic chemotherapeutic agents. Clinical combinations of AA with microtubule targeting agents (MTAs) have been particularly successful. The discovery, synthesis and biological evaluations of a series of 7-benzyl-N-substituted-pyrrolo[3,2-d]pyrimidin-4-amines are reported.
View Article and Find Full Text PDFIt been shown that IL-6 modulates TGF-β1 expression in fibroblasts, however, what role IL-6 plays concerning TGF-βR expression and function in skin is unknown. Therefore, the aim of this study was to investigate the mechanism by which IL-6 might modulates TGF-β receptors in skin. Skin from WT, IL-6 over-expressing mice and IL-6 treated keratinocyte cultures was analysed for TGF-βRI and TGF-βRII expression via histology, PCR and flow cytometry.
View Article and Find Full Text PDFBackground: High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease.
View Article and Find Full Text PDFA series of eleven conformationally restricted, 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines was designed to explore the bioactive conformation required for dual inhibition of microtubule assembly and receptor tyrosine kinases (RTKs), and their biological activities are reported. All three rotatable single bonds in the lead compound 1 were sequentially restricted to address the role of each in SAR for microtubule and RTK inhibitory effects. Compounds 2, 3, 7 and 10 showed microtubule depolymerizing activity comparable to or better than the lead 1, some with nanomolar EC50 values.
View Article and Find Full Text PDFTherapy for treatment-resistant breast cancer provides limited options and the response rates are low. Therefore, the development of therapies with alternative chemotherapeutic strategies is necessary. AG311 (5-[(4-methylphenyl)thio]-9H-pyrimido[4,5-b]indole-2,4-diamine), a small molecule, is being investigated in preclinical and mechanistic studies for treatment of resistant breast cancer through necrosis, an alternative cell death mechanism.
View Article and Find Full Text PDFGlutamate is an excitatory neurotransmitter, released by primary sensory peripheral nerve and spinal synaptic terminals during nociceptive (pain) signaling. The primary source of neurotransmitter, glutamate, is provided from its synthetic enzyme, glutaminase (GLS). Neurotransmitter glutamate is packaged into synaptic vesicles in nociceptive neurons by the vesicular glutamate transporter 2 (VGluT2).
View Article and Find Full Text PDF