Publications by authors named "Ihn Han"

The therapeutic application and dose of cisplatin are limited due to its toxicity to normal cells. Therefore, combination treatments might be the solution with a low dose of cisplatin. The combination effect of nanosecond pulsed high-power microwave (HPM) with cisplatin has not been investigated before.

View Article and Find Full Text PDF

Computational algorithms and tools have retrenched the drug discovery and development timeline. The applicability of computational approaches has gained immense relevance owing to the dramatic surge in the structural information of biomacromolecules and their heteromolecular complexes. Computational methods are now extensively used in identifying new protein targets, druggability assessment, pharmacophore mapping, molecular docking, the virtual screening of lead molecules, bioactivity prediction, molecular dynamics of protein-ligand complexes, affinity prediction, and for designing better ligands.

View Article and Find Full Text PDF

Osteoporosis is manifested by decreased bone density and deterioration of bone architecture, increasing the risk of bone fractures Human bone marrow mesenchymal stem cells (hBMSCs)-based tissue engineering serves as a crucial technique for regenerating lost bone and preventing osteoporosis. Non-thermal biocompatible plasma (NBP) is a potential new therapeutic approach employed in several biomedical applications, including regenerative medicine. NBP affects bone remodeling; however, its role in the regulation of osteogenic differentiation in hBMSCs remains largely unexplored.

View Article and Find Full Text PDF

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment.

View Article and Find Full Text PDF

Nonthermal biocompatible plasma (NBP) is a promising option for improving medication absorption into the human skin. Currently, most plasma devices for cosmetics employ a floating-electrode plasma source for treating the skin. Human skin serves as the ground electrode in the floating-electrode plasma discharge, and discharge occurs between the skin and electrodes of the device.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for the initiation of the global pandemic since 2020. The virus spreads through contaminated air particles, fomite, and surface-contaminated porous (i.e.

View Article and Find Full Text PDF

Based on recent research, the non-coding genome is essential for controlling genes and genetic programming during development, as well as for health and cardiovascular diseases (CVDs). The microRNAs (miRNAs), lncRNAs (long ncRNAs), and circRNAs (circular RNAs) with significant regulatory and structural roles make up approximately 99% of the human genome, which does not contain proteins. Non-coding RNAs (ncRNA) have been discovered to be essential novel regulators of cardiovascular risk factors and cellular processes, making them significant prospects for advanced diagnostics and prognosis evaluation.

View Article and Find Full Text PDF

Nonthermal biocompatible plasma (NBP) is an emerging technology in the field of agriculture to boost plant growth. Plasma is a source of various gaseous reactive oxygen and nitrogen species (RONS) and has a promising role in agricultural applications, as the long-lived RONS (HO, NO, NO) in liquid activate signaling molecules in plant metabolism. Plasma-treated water (PTW) has an acidic pH of around 3 to 4, which may be detrimental to pH-sensitive plants.

View Article and Find Full Text PDF

Optimizing the therapeutic range of nonthermal atmospheric pressure plasma (NTAPP) for biomedical applications is an active research topic. For the first time, we examined the effect of plasma on-times in this study while keeping the duty ratio and treatment time fixed. We have evaluated the electrical, optical, and soft jet properties for two different duty ratios of 10% and 36%, using the plasma on-times of 25, 50, 75, and 100 ms.

View Article and Find Full Text PDF

Pulsed high-power microwave (HPM) has many applications and is constantly being researched to expand its uses in the future. As the number of applications grows, the biological effects and safety level of pulsed HPM become a serious issue, requiring further research. The brain is regarded as the most vulnerable organ to radiation, raising concerns about determining an acceptable level of exposure.

View Article and Find Full Text PDF

We investigated the characteristics of a rollable dielectric barrier discharge (RDBD) and evaluate its effects on seed germination rate and water uptake. The RDBD source was composed of a polyimide substrate and copper electrode, and it was mounted in a rolled-up structure for omnidirectional and uniform treatment of seeds with flowing synthetic air gas. The rotational and vibrational temperatures were measured to be 342 K and 2860 K, respectively, using optical emission spectroscopy.

View Article and Find Full Text PDF

Recent times have seen a strong surge in therapeutically targeting the hedgehog (HH)/GLI signaling pathway in cervical cancer. HH signaling pathway is reported to be a crucial modulator of carcinogenesis in cervical cancer and is also associated with recurrence and development of chemoresistance. Moreover, our previous reports have established that carvacrol (CAR) inhibited the proliferation of prostate cancer cells inhibiting the Notch signaling pathway and thus, it was rational to explore its antiproliferative effects in cervical cancer cell lines.

View Article and Find Full Text PDF

SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc.

View Article and Find Full Text PDF

Calcium magnesium carbonate nanoparticles (CaMg(CO) NPs), well-known as dolomite, are formed by the replacement of half of the calcite minerals of limestone. The dolomite (CaMg(CO)) nanoparticles are composed of calcite (CaCO) and magnesium carbonate (MgCO), both of which offer promising strategies for maintaining growth and development in mammals and agricultural plants. A grounded mixture of dolomite limestone was prepared via colloidal precipitates for the synthesis of CaMg(CO) NPs, and their characteristics were examined using XRD, particle size analysis by DLS, and surface morphology by SEM and TEM.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications.

View Article and Find Full Text PDF

Dementia is reported to be common in those with type 2 diabetes mellitus. Type 2 diabetes contributes to common molecular mechanisms and an underlying pathology with dementia. Brain cells becoming resistant to insulin leads to elevated blood glucose levels, impaired synaptic plasticity, microglial overactivation, mitochondrial dysfunction, neuronal apoptosis, nutrient deprivation, TAU (Tubulin-Associated Unit) phosphorylation, and cholinergic dysfunction.

View Article and Find Full Text PDF

Global society has been highly pressured by the COVID-19 pandemic, which has exposed vulnerabilities in supply chains for disinfection products, personal protective equipment, and medical resources worldwide. It is critically necessary to find effective treatments and medications for these viral infections. This review summarizes and emphasizes critical features of recent breakthroughs in vaccines, inhibitors, radiations, and innovative nonthermal atmospheric plasma (NTAP) technologies to inactivate COVID-19.

View Article and Find Full Text PDF

This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity.

View Article and Find Full Text PDF

Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.

View Article and Find Full Text PDF

Vaginal cancer is a rare and uncommon disease that is rarely discussed. Although vaginal cancer traditionally occurs in older postmenopausal women, the incidence of high-risk human papillomavirus (HPV)-induced cancers is increasing in younger women. Cervical cancer cells contain high-risk human papillomavirus (HPV) E6 and E7 proteins and inhibiting HPV gene expression leads the cells to stop proliferating and enter senescence.

View Article and Find Full Text PDF

Nonthermal biocompatible plasma (NBP) sources operating in atmospheric pressure environments and their characteristics can be used for plasma bioscience, medicine, and hygiene applications, especially for COVID-19 and citizen. This review surveyed the various NBP sources, including a plasma jet, micro-DBD (dielectric barrier discharge) and nanosecond discharged plasma. The electron temperatures and the plasma densities, which are produced using dielectric barrier discharged electrode systems, can be characterized as 0.

View Article and Find Full Text PDF

Non-thermal biocompatible plasma (NBP) was considered as an efficient tool in tissue engineering to modify the surface of biomaterials. Three-dimensional chitosan scaffolds have been extensively used in different ways because it holds some remarkable properties, including biodegradability and biocompatibility. In this study, we evaluated the osteogenic potential of NBP-treated chitosan scaffolds using two different plasma sources: a dielectric barrier discharge (NBP-DBD) and a soft jet (NBP-J).

View Article and Find Full Text PDF

Effective penetration into cells, or binding to cell membranes is an essential property of an effective nanoparticle drug delivery system (DDS). Nanoparticles are generally internalized through active transport mechanisms such as apoptosis, and cargo can be released directly into the cytoplasm. A metal-organic framework (MOF) is a network structure consisting of metal clusters connected by organic linkers with high porosity; MOFs provide a desirable combination of structural features that can be adjusted with large cargo payloads, along with Cu, Co, and Zn-MOFs, which have the chemical stability required for water-soluble use.

View Article and Find Full Text PDF

Bacteria employ numerous resistance mechanisms against structurally distinct drugs by the process of multidrug resistance. A study was planned to discover the antibacterial potential of a graphene oxide nanosheet (GO), a graphene oxide-zinc oxide nanocomposite (GO/ZnO), a graphene oxide-chitosan nanocomposite (GO-CS), a zinc oxide decorated graphene oxide-chitosan nanocomposite (GO-CS/ZnO), and zinc oxide nanoparticles (ZnO) alone and in a blend with antibiotics against a PS-2 isolate of . These nanocomposites reduced the MIC of tetracycline (TET) from 16 folds to 64 folds against a multidrug-resistant clinical isolate.

View Article and Find Full Text PDF