Publications by authors named "Ihlefeld J"

The discovery of ferroelectricity in hafnia based thin films has catalyzed significant research focused on understanding the ferroelectric property origins and means to increase stability of the ferroelectric phase. Prior studies have revealed that biaxial tensile stress via an electrode "capping effect" is a suspected ferroelectric phase stabilization mechanism. This effect is commonly reported to stem from a coefficient of thermal expansion (CTE) incongruency between the hafnia and top electrode.

View Article and Find Full Text PDF

Better techniques for imaging ferroelectric polarization would aid the development of new ferroelectrics and the refinement of old ones. Here we show how scanning transmission electron microscope (STEM) electron beam-induced current (EBIC) imaging reveals ferroelectric polarization with obvious, simply interpretable contrast. Planar imaging of an entire ferroelectric hafnium zirconium oxide (HfZrO, HZO) capacitor shows an EBIC response that is linearly related to the polarization determined with the positive-up, negative-down (PUND) method.

View Article and Find Full Text PDF

Phase identification in HfO-based thin films is a prerequisite to understanding the mechanisms stabilizing the ferroelectric phase in these materials, which hold great promise in next-generation nonvolatile memory and computing technology. While grazing-incidence X-ray diffraction is commonly employed for this purpose, it has difficulty unambiguously differentiating between the ferroelectric phase and other metastable phases that may exist due to similarities in the -spacings, their low intensities, and the overlapping of reflections. Infrared signatures provide an alternative route.

View Article and Find Full Text PDF

As ferroelectric hafnium zirconium oxide (HZO) becomes more widely utilized in ferroelectric microelectronics, integration impacts of intentional and nonintentional dielectric interfaces and their effects upon the ferroelectric film wake-up (WU) and circuit parameters become important to understand. In this work, the effect of the addition of a linear dielectric aluminum oxide, Al2O3, below a ferroelectric Hf0.58Zr0.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroelectricity in binary oxides like hafnia and zirconia has gained attention for its unique physical mechanisms and potential use in semiconductors.
  • Recent studies indicate that the properties of these materials are influenced by various factors, including electrochemical conditions and strain, leading to unusual behaviors.
  • Research utilizing advanced microscopy reveals that these materials exhibit a range of ferroic behaviors, suggesting an antiferroionic model that could help optimize hafnia-based devices.
View Article and Find Full Text PDF

Materials with tunable thermal properties enable on-demand control of temperature and heat flow, which is an integral component in the development of solid-state refrigeration, energy scavenging, and thermal circuits. Although gap-based and liquid-based thermal switches that work on the basis of mechanical movements have been an effective approach to control the flow of heat in the devices, their complex mechanisms impose considerable costs in latency, expense, and power consumption. As a consequence, materials that have multiple solid-state phases with distinct thermal properties are appealing for thermal management due to their simplicity, fast switching, and compactness.

View Article and Find Full Text PDF

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity, are measured using macroscopic techniques that lack spatial resolution.

View Article and Find Full Text PDF

Doped ferroelectric HfO is highly promising for integration into complementary metal-oxide semiconductor (CMOS) technology for devices such as ferroelectric nonvolatile memory and low-power field-effect transistors (FETs). We report the direct measurement of the energy barriers between various metal electrodes (Pt, Au, Ta, TaN, Ti/Pt, Ni, Al) and hafnium zirconium oxide (HfZrO, HZO) using internal photoemission (IPE) spectroscopy. Results are compared with valence band offsets determined using the three-sample X-ray photoelectron spectroscopy (XPS) as well as the two-sample hard X-ray photoelectron spectroscopy (HAXPES) techniques.

View Article and Find Full Text PDF

We experimentally show that the thermal conductance across confined solid-solution crystalline thin films between parent materials does not necessarily lead to an increase in thermal resistances across the thin-film geometries with increasing film thicknesses, which is counterintuitive to the notion that adding a material serves to increase the total thermal resistance. Confined thin epitaxial CaSrTiO solid-solution films with systematically varying thicknesses in between two parent perovskite materials of calcium titanate and (001)-oriented strontium titanate are grown, and thermoreflectance techniques are used to accurately measure the thermal boundary conductance across the confined solid-solution films, showing that the thermal resistance does not substantially increase with the addition of solid-solution films with increasing thicknesses from ∼1 to ∼10 nm. Contrary to the macroscopic understanding of thermal transport where adding more material along the heat propagation direction leads to larger thermal resistances, our results potentially offer experimental support to the computationally predicted concept of vibrational matching across interfaces.

View Article and Find Full Text PDF

Ferroelectric hafnium zirconium oxide holds great promise for a broad spectrum of complementary metal-oxide-semiconductor (CMOS) compatible and scaled microelectronic applications, including memory, low-voltage transistors, and infrared sensors, among others. An outstanding challenge hindering the implementation of this material is polarization instability during field cycling. In this study, the nanoscale phenomena contributing to both polarization fatigue and wake-up are reported.

View Article and Find Full Text PDF

Ferroelastic domain walls in ferroelectric materials possess two properties that are known to affect phonon transport: a change in crystallographic orientation and a lattice strain. Changing populations and spacing of nanoscale-spaced ferroelastic domain walls lead to the manipulation of phonon-scattering rates, enabling the control of thermal conduction at ambient temperatures. In the present work, lead zirconate titanate (PZT) thin-film membrane structures were fabricated to reduce mechanical clamping to the substrate and enable a subsequent increase in the ferroelastic domain wall mobility.

View Article and Find Full Text PDF

Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena.

View Article and Find Full Text PDF

Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.

View Article and Find Full Text PDF

The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet-visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve subwavelength optical confinement with low loss in this range. With a combination of experiments and ab initio modelling, here we demonstrate an extreme peak of electron mobility in Dy-doped CdO that is achieved through accurate 'defect equilibrium engineering'.

View Article and Find Full Text PDF

Above-band-gap optical excitation produces interdependent structural and electronic responses in a multiferroic BiFeO(3) thin film. Time-resolved synchrotron x-ray diffraction shows that photoexcitation can induce a large out-of-plane strain, with magnitudes on the order of half of one percent following pulsed-laser excitation. The strain relaxes with the same nanosecond time dependence as the interband relaxation of excited charge carriers.

View Article and Find Full Text PDF

We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si(1-x)Ge(x) thin films with varying thicknesses and compositions were measured with time-domain thermoreflectance. The resulting conductivities are found to be 3 to 5 times less than bulk values and vary strongly with film thickness.

View Article and Find Full Text PDF

We demonstrate, for the first time, an all-dielectric metamaterial composite in the midinfrared based on micron-sized, high-index tellurium dielectric resonators. Dielectric resonators are desirable compared to conventional metallodielectric metamaterials at optical frequencies as they are largely angular invariant, free of Ohmic loss, and easily integrated into three-dimensional volumes. Measurements and simulation provide evidence of optical magnetism, which could be used for infrared magnetic mirrors, hard or soft surfaces, and subwavelength cavities.

View Article and Find Full Text PDF

By utilizing an equilibrium processing strategy that enables co-firing of oxides and base metals, a means to integrate the lithium-stable fast lithium-ion conductor lanthanum lithium tantalate directly with a thin copper foil current collector appropriate for a solid-state battery is presented. This resulting thin-film electrolyte possesses a room temperature lithium-ion conductivity of 1.5 × 10(-5) S cm(-1) , which has the potential to increase the power of a solid-state battery over current state of the art.

View Article and Find Full Text PDF

Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering.

View Article and Find Full Text PDF

BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.

View Article and Find Full Text PDF