Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 2019-2023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites.
View Article and Find Full Text PDFExposure to ambient fine particulate matter (PM) is a leading risk factor for the global burden of disease. However, uncertainty remains about PM sources. We use a global chemical transport model (GEOS-Chem) simulation for 2014, constrained by satellite-based estimates of PM to interpret globally dispersed PM mass and composition measurements from the ground-based surface particulate matter network (SPARTAN).
View Article and Find Full Text PDFColumnar mass concentrations of aerosol components over the Arctic are estimated using microphysical parameters derived from direct sun extinction and sky radiance measurements of Aerosol Robotic Network. Aerosol optical, microphysical, chemical and radiative properties show that Arctic aerosols are dominated by fine mode particles, especially for high aerosol load cases. The average aerosol optical depth (AOD) of the selected Arctic sites in the sampling period is approximately 0.
View Article and Find Full Text PDF