Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance.
View Article and Find Full Text PDFHepatic steatosis and subsequent fatty liver disease are developed in response to alcohol consumption. Reactive oxygen species (ROS) are thought to play an important role in the alcoholic fatty liver disease (AFLD). However, the molecular targets of ROS and the underlying cellular mechanisms are unknown.
View Article and Find Full Text PDFBackground: Transforming growth factor-β (TGF-β) signaling is a double-edged sword in cancer development and progression. TGF-β signaling plays a tumor suppressive role during the early stages of tumor development but promotes tumor progression in later stages. We have previously identified various mutations of TGF-β receptor II (TβRII) in human oral squamous cell carcinoma (OSCC) samples.
View Article and Find Full Text PDFPhosphatase and tensin homologs deleted on chromosome 10 (PTEN) is a potent tumor suppressor and often dysregulated in cancers. Cellular PTEN activity is restrained by the oxidation of active-site cysteine by reactive oxygen species (ROS). Recovery of its enzymatic activity predominantly depends on the availability of cellular thioredoxin (Trx) and peroxiredoxins (Prx), both are important players in cell signaling.
View Article and Find Full Text PDFSelenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide.
View Article and Find Full Text PDFPhosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that coordinates various cellular processes. Its activity is regulated by the reversible oxidation of an active-site cysteine residue by HO and thioredoxin. However, the potential role of lipid peroxides in the redox regulation of PTEN remains obscure.
View Article and Find Full Text PDFIntracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized.
View Article and Find Full Text PDFOrganic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown.
View Article and Find Full Text PDFTissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial-mesenchymal transition (EMT)/ mesenchymal-epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7-transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities.
View Article and Find Full Text PDFPTEN is reversibly oxidized in various cells by exogenous hydrogen peroxide as well as by endogenous hydrogen peroxide generated when cells are stimulated with growth factors, cytokines and hormones. A gel mobility shift assay showed that oxidized PTEN migrated more rapidly than reduced PTEN on a non-reducing SDS-PAGE gel. Oxidized PTEN was reduced when treated with dithiothreitol.
View Article and Find Full Text PDFWe present a novel gain-of-function mutation of TGF-β receptor II (TβRII) found in human oral squamous cell carcinoma (OSCC). Expression of E221V/N238I mutant TβRII enhanced TGF-β signaling. Mutation of TβRII conferred cells higher migratory and invasive capabilities and MMP-2 activity.
View Article and Find Full Text PDFKAI1/CD82, a tetraspanin membrane protein functions as a metastasis suppressor in many types of human cancers and has been shown to regulate cell adhesion properties. In the present study, we investigated the underlying mechanism of KAI1/CD82-mediated changes in cell adhesion to the extracellular matrix using human prostate cancer cells. We found that high KAI1/CD82 expression attenuated short-term cell adhesion to uncoated- or fibronectin-coated plates.
View Article and Find Full Text PDFThe activity of matrix metalloproteinases (MMPs), which selectively degrades the extracellular matrix (ECM), is critical in angiogenesis. Conversely, changes in ECM composition/structure alter the expression and activity of MMPs in various cell types. In the present study, we examined whether changes in ECM composition affect MMPs expression/activity of endothelial cells and thereby alter the surrounding ECM structure.
View Article and Find Full Text PDFA cancer/testis antigen, CAGE, is widely expressed in various cancer tissues and cancer cell lines but not in normal tissues except the testis. In the present study, ectopic expression of CAGE in fibroblast cells resulted in foci formation, suggesting its cell-transforming ability. Using stable HeLa transfectant clones with the tetracycline-inducible CAGE gene, we found that CAGE overexpression stimulated both anchorage-dependent and -independent cell growth in vitro and promoted tumor growth in a xenograft mouse model.
View Article and Find Full Text PDFIsoliquiritigenin, a natural flavonoid found in licorice, shallots, and bean sprouts, has been demonstrated to inhibit proliferation and to induce apoptosis in a variety of human cancer cells. We attempted to ascertain the underlying mechanism by which isoliquiritigenin induced cell cycle arrest and cytotoxicity in HeLa human cervical cancer cells. Isoliquiritigenin treatment arrested cells in both G2 and M phase.
View Article and Find Full Text PDFTopoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling.
View Article and Find Full Text PDFMethods Mol Biol
April 2003
Development of sensitive methods to monitor and quantitatively assess the expression levels of endogenous genes and the association-interaction of proteins in living cells and whole organisms is a complex and challenging problem. In this chapter, we have described basic methods for investigating protein-protein interactions which include immunoprecipitation, GST pull-down assays, peptide bead pull-down assays, chemical crosslinking and photoaffinity labeling. These methods should provide important tools to dissect crosstalk between proteins and the direct implications of this crosstalk in signaling pathways and cancer biology.
View Article and Find Full Text PDF