The article presents the results of modeling various modes of vacuum infusion molding of thin-walled polymer-composite structures of arbitrary geometry. The small thickness of the manufactured structures and the fixation of their back surface on the rigid surface of the mold made it possible to significantly simplify the process model, which takes into account the propagation of a thermosetting resin with changing rheology in a compressible porous preform of complex 3D geometry, as well as changes in boundary conditions at the injection and vacuum ports during the post-infusion molding stage. In the four modes of vacuum-infusion molding studied at the post-infusion stage, the start time, duration and magnitude of additional pressure on the open surface of the preform and in its vacuum port, as well as the state of the injection gates, were controlled (open-closed).
View Article and Find Full Text PDFThe objective of this study is to describe the stress relaxation behavior of an epoxy-based fiber-reinforced material. An existing incremental formulation of an orthotropic linear viscoelastic material behavior was adapted to Voigt notation and to the special case of an isotropic material. Virtual relaxation tests on a representative volume element were performed, and the behavior of individual components of the relaxation tensor of the transversely isotropic composite material was determined.
View Article and Find Full Text PDFAdditive manufacturing of high-performance polymers-such as PA12, PPS, PEEK, and PEKK-combined with industrial-grade carbon fibers with a high fiber volume ratio of up to 60% allows a weight reduction of over 40% compared to classic metal construction. Typically, these 3D-printed composites have a porosity of 10-30% depending on the material and the printing process parameters, which significantly reduces the quality of the part. Therefore, the additive manufacturing of load-bearing structural applications requires a proper consolidation after the printing process-the so-called 'additive fusion technology'-allowing close to zero void content in the consolidated part.
View Article and Find Full Text PDFThe increasingly widespread use of vacuum assisted technologies in the manufacture of polymer-composite structures does not always provide the required product quality and repeatability. Deterioration of quality most often appears itself in the form of incomplete filling of the preform with resin as a result of the inner and outer dry spot formation, as well as due to premature gelation of the resin and blockage of the vacuum port. As experience shows, these undesirable phenomena are significantly dependent on the location of the resin and vacuum ports.
View Article and Find Full Text PDFInsect wings are an outstanding example of how a proper interplay of rigid and flexible materials enables an intricate flapping flight accompanied by sound. The understanding of the aerodynamics and acoustics of insect wings has enabled the development of man-made flying robotic vehicles and explained basic mechanisms of sound generation by natural flyers. This work proposes the concept of artificial wings with a periodic pattern, inspired by metamaterials, and explores how the pattern geometry can be used to control the aerodynamic and acoustic characteristics of a wing.
View Article and Find Full Text PDFCreating connection points for sandwich-structured composites without losing technical performance is key to realising optimal lightweight structures. The patented LiteWWeight technology presents cost-effective connections on sandwich panels in a fraction of a few seconds without predrilling. Ultrasonic equipment is used to insert a thermoplastic fastener into the substrate material and partially melt it into the porous internal structure.
View Article and Find Full Text PDF