Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity.
View Article and Find Full Text PDFThis research presents a novel port parametric modeling technique using three-dimensional computational fluid dynamics for the design and optimization of intake and exhaust phases in side-ported Wankel rotary engines (WREs). Definitions for the port phases encompass parameters such as port start opening, port full opening, port start closing, and port full closing timings. The four port phase control arcs are obtained by translating and rotating the rotor flank to satisfy the high control accuracy.
View Article and Find Full Text PDFPlants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial adapted to warmer temperatures (28°C vs.
View Article and Find Full Text PDFAn epigenetic memory of the temperature sum experienced during embryogenesis is part of the climatic adaptation strategy of the long-lived gymnosperm Norway spruce. This memory has a lasting effect on the timing of bud phenology and frost tolerance in the resulting epitype trees. The epigenetic memory is well characterized phenotypically and at the transcriptome level, but to what extent DNA methylation changes are involved have not previously been determined.
View Article and Find Full Text PDFA major challenge for plants in a rapidly changing climate is to adapt to rising temperatures. Some plants adapt to temperature conditions by generating an epigenetic memory that can be transmitted both meiotically and mitotically. Such epigenetic memories may increase phenotypic variation to global warming and provide time for adaptation to occur through classical genetic selection.
View Article and Find Full Text PDFTemperature conditions experienced during embryogenesis and seed development may induce epigenetic changes that increase phenotypic variation in plants. Here we investigate if embryogenesis and seed development at two different temperatures (28 vs. 18°C) result in lasting phenotypic effects and DNA methylation changes in woodland strawberry (Fragaria vesca).
View Article and Find Full Text PDFPlants provide not only food and feed, but also herbal medicines and various raw materials for industry. Moreover, plants can be green factories producing high value bioproducts such as biopharmaceuticals and vaccines. Advantages of plant-based production platforms include easy scale-up, cost effectiveness, and high safety as plants are not hosts for human and animal pathogens.
View Article and Find Full Text PDFHerein, we report that chromone-containing allylmorpholines can affect ion channels formed by pore-forming antibiotics in model lipid membranes, which correlates with their ability to influence membrane boundary potential and lipid-packing stress. At 100 µg/mL, allylmorpholines , , , and decrease the boundary potential of the bilayers composed of palmitoyloleoylphosphocholine (POPC) by about 100 mV. At the same time, the compounds do not affect the zeta-potential of POPC liposomes, but reduce the membrane dipole potential by 80-120 mV.
View Article and Find Full Text PDFPathological calcium homeostasis accompanies the development of a large number of different diseases, therefore, the search for new modulators of calcium signaling remains highly actual. Last decades store-operated calcium channels have been repeatedly postulated as a therapeutic target, so the compounds acting on them can be considered promising drug prototypes. Here, we tested several derivatives of 1,2,3,4-dithiadiazole, 1,3-thiazine, pyrazolopyrimidine and thiohydrazides for the ability to affect the thapsigargin-induced calcium response.
View Article and Find Full Text PDFWe report a flexible approach to the synthesis of phenanthrene-like heterocycles through organocatalytic ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) reaction of electron-deficient 3-vinylchromones with cyanoacetamide. Addition of highly basic DBU (1,8-diazabicyclo[5.4.
View Article and Find Full Text PDFAquaculture has undergone rapid development in the past decades. It provides a large part of high-quality protein food for humans, and thus, a sustainable aquaculture industry is of great importance for the worldwide food supply and economy. Along with the quick expansion of aquaculture, the high fish densities employed in fish farming increase the risks of outbreaks of a variety of aquatic diseases.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Methylated cytosine (5-methylcytosine) is the most studied epigenetic mark involved in the regulation of gene expression. Although it displays highly variable dynamics during plant ontogenesis, it is possible to gain a fine spatial perspective with immunohistochemistry techniques that use specific antibodies and fluorochromes. Besides, there are other cytosine modifications described in plants, although their biological significance is still unknown (i.
View Article and Find Full Text PDFEndogenous antimicrobial peptides (AMPs) are evolutionarily ancient factors of innate immunity, which are produced by all multicellular organisms and play a key role in their protection against infection. Red king crab (Paralithodes camtschaticus), also called Kamchatka crab, is widely distributed and the best known species of all king crabs belonging to the family Lithodidae. Despite their economic importance, the genetic resources of king crabs are scarcely known and no full-genome sequences are available to date.
View Article and Find Full Text PDFOver the past decade, thiazines, thiadiazoles, and thiohydrazides have attracted increasing attention due to their sedative, antimicrobial, antiviral, antifungal, and antitumor activities. The clinical efficacy of such drugs, as well as the possibility of developing resistance to antimicrobials, will depend on addressing a number of fundamental problems, including the role of membrane lipids during their interaction with plasma membranes. The effects of the eight 1,3- thiazine-, 1,2,3,4- dithiadiazole-, and thiohydrazide-related compounds on the physical properties of model lipid membranes and the effects on reconstituted ion channels induced by the polyene macrolide antimycotic nystatin and antifungal cyclic lipopeptides syringomycin E and fengycin were observed.
View Article and Find Full Text PDF5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene expression in metazoans and plants. Iron-(II)/α-ketoglutarate-dependent dioxygenases can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although these oxidized forms of 5mC may serve as demethylation intermediates or contribute to transcriptional regulation in animals and fungi, experimental evidence for their presence in plant genomes is ambiguous.
View Article and Find Full Text PDFEpigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology.
View Article and Find Full Text PDFEpigenetic memory affects the timing of bud burst phenology and the expression of bud burst-related genes in genetically identical Norway spruce epitypes in a manner usually associated with ecotypes. In Norway spruce, a temperature-dependent epigenetic memory established during embryogenesis affects the timing of bud burst and bud set in a reproducible and predictable manner. We hypothesize that the clinal variation in these phenological traits, which is associated with adaptation to growth under frost-free conditions, has an epigenetic component.
View Article and Find Full Text PDFPlant Signal Behav
December 2016
Bud-break is an environmentally and economically important trait in trees, shrubs and vines from temperate latitudes. Poor synchronization of bud-break timing with local climates can lead to frost injuries, susceptibility to pests and pathogens and poor crop yields in fruit trees and vines. The rapid climate changes outpace the adaptive capacities of plants to respond through natural selection.
View Article and Find Full Text PDFTo investigate the role of dehydrins (DHNs) in extreme low-temperature (LT) tolerance, we sampled needle tissue of Siberian spruce (Picea obovata Ledeb.) from trees growing in an arboretum in Trondheim, Norway from August 2006 to April 2007 and tracked changes in LT tolerance via relative electrolyte leakage. We used western blotting to estimate relative amounts of proteins binding a DHN K-segment antibody, measured relative amounts of nine transcripts for small (<25 kDa) DHNs by quantitative reverse transcription-polymerase chain reaction (PCR) using primers developed for DHN transcripts in a closely related species, Picea abies (L.
View Article and Find Full Text PDFThe pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H.
View Article and Find Full Text PDFBackground: NB-LRR resistance proteins are involved in recognizing pathogens and other exogenous stressors in plants. Resistance proteins are the first step in induced defence responses and a better understanding of their regulation is important to understand the mechanisms of plant defence. Much of the post-transcriptional regulation in plants is controlled by microRNAs (miRNA).
View Article and Find Full Text PDF