Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, both in the synthesis of nanodiamonds and in the controlled formation of negatively charged silicon-vacancy centers in such nanodiamonds. Using different adamantane/detonation nanodiamond weight ratios, a series of samples was synthesized at a pressure of 7.
View Article and Find Full Text PDFPrecise control of cellular temperature at the microscale is crucial for developing novel neurostimulation techniques. Here, the effect of local heat on the electrophysiological properties of primary neuronal cultures and HEK293 cells at the subcellular level using a cutting-edge micrometer-scale thermal probe, the diamond heater-thermometer (DHT), is studied. A new mode of local heat action on a living cell, thermal-capture mode (TCM), is discovered using the DHT probe.
View Article and Find Full Text PDFTemperature is a crucial regulator of the rate and direction of biochemical reactions and cell processes. The recent data indicating the presence of local thermal gradients associated with the sites of high-rate thermogenesis, on the one hand, demonstrate the possibility for the existence of "thermal signaling" in a cell and, on the other, are criticized on the basis of thermodynamic calculations and models. Here, we review the main thermometric techniques and sensors developed for the determination of temperature inside living cells and diverse intracellular compartments.
View Article and Find Full Text PDFWe report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser.
View Article and Find Full Text PDFThe production of heat by mitochondria is critical for maintaining body temperature, regulating metabolic rate, and preventing oxidative damage to mitochondria and cells. Until the present, mitochondrial heat production has been characterized only by methods based on fluorescent probes, which are sensitive to environmental variations (viscosity, pH, ionic strength, quenching, etc.).
View Article and Find Full Text PDFBright and stable emitters of single indistinguishable photons are crucial for quantum technologies. The origin of the promising bright emitters recently observed in hexagonal boron nitride (hBN) still remains unclear. This study reports pure single-photon sources in multi-layered hBN at room temperature that demonstrate high emission rates.
View Article and Find Full Text PDFTwo novel properties, unique for semiconductors, a negative electron affinity and a high p-type surface electrical conductivity, were discovered in diamond at the end of the last century. Both properties appear when the diamond surface is hydrogenated. A natural question arises: is the influence of the surface hydrogen on diamond limited only to the electrical properties? Here, for the first time to our knowledge, we observe a transparency peak at 1328 cm in the infrared absorption of hydrogen-terminated pure (undoped) nanodiamonds.
View Article and Find Full Text PDFSpontaneous light emission is known to be affected by the local density of states and enhanced when coupled to a resonant cavity. Here, we report on an experimental study of silicon-vacancy (SiV) color center fluorescence and spontaneous Raman scattering from subwavelength diamond particles supporting low-order Mie resonances in the visible range. For the first time to our knowledge, we have measured the size dependences of the SiV fluorescence emission rate and the Raman scattering intensity from individual diamond particles in the range from 200 to 450 nm.
View Article and Find Full Text PDFNanodiamonds hosting temperature-sensing centers constitute a closed thermodynamic system. Such a system prevents direct contact of the temperature sensors with the environment making it an ideal environmental insensitive nanosized thermometer. A new design of a nanodiamond thermometer, based on a 500-nm luminescent nanodiamond embedded into the inner channel of a glass submicron pipette is reported.
View Article and Find Full Text PDFLocal targeted "inside-out" hyperthermia of tumors via nanoparticles is able to sensitize tumor cells to chemotherapy, radiation therapy, gene therapy, immunotherapy, or other effects, significantly reducing the duration and intensity of treatment. In this article, new nanomaterials are proposed to be used as anticancer agents: boron-doped nanodiamonds with sizes of about 10 nm synthesized for the first time by the high-temperature high-pressure (HTHP) method. The heating ability of boron-doped nanodiamonds was investigated under different heating conditions in different environments: water, chicken egg white, and MCF-7 breast cancer cells.
View Article and Find Full Text PDFExperimental results are presented on laser-assisted synthesis of composite nanoparticles of perovskite BaTiO with gold nanoparticles using the technique of laser ablation in water and aqueous solution of hydrogen peroxide. Nanoparticles of BaTiO are generated by near IR laser radiation with pulse durations of 170 fs, 1 ps, and 200 ns. Nanoparticles of barium titanate BaTiO (BTO) have tetragonal structure for all used pulse durations.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2020
The absolute luminescence quantum yield Q as a function of excitation wavelength λ in a wide spectral range 270-470 nm was measured for the first time for the group of carbon nanoparticles dispersed in water: carbon dots (CD), detonation nanodiamonds (DND), as well as detonation nanodiamonds decorated with carbon dots (CD-DND). The luminescence quantum yield for DND increased after functionalization; the CD-decorated DND demonstrated significantly higher Q values in the UV region of excitation. We found that the quantum yield for CD luminescence is 4-8 times higher than that for CD-DND luminescence, and 20 times higher than that for DND luminescence.
View Article and Find Full Text PDFJ Vac Sci Technol B Nanotechnol Microelectron
May 2019
Diamond particles containing color centers-fluorescent crystallographic defects embedded within the diamond lattice-outperform other classes of fluorophores by providing a combination of unmatched photostability, intriguing coupled magneto-optical properties, intrinsic biocompatibility, and outstanding mechanical and chemical robustness. This exceptional combination of properties positions fluorescent diamond particles as unique fluorophores with emerging applications in a variety of fields, including bioimaging, ultrasensitive metrology at the nanoscale, fluorescent tags in industrial applications, and even potentially as magnetic resonance imaging contrast agents. However, production of fluorescent nanodiamond (FND) is nontrivial, since it requires irradiation with high-energy particles to displace carbon atoms and create vacancies-a primary constituent in the majority color centers.
View Article and Find Full Text PDFHypothesis: Nanodiamonds, one of the most promising nanomaterials for the use in biomedicine, placed in the organisms are bound to interact with various amphiphilic lipids and their micelles. However, while the influence of surfactants, the close relative of lipids, on the properties of colloidal nanodiamonds is well studied, the influence of nanodiamonds on the properties of surfactants, lipids, and, therefore, on the structure of surrounding tissues, is poorly understood.
Experiment: In this work, the influence of interactions of hydrophobic and hydrophilic nanodiamonds with ionic surfactant sodium octanoate in water on hydrogen bonds, the properties of the surfactant and micelle formation were studied using Raman spectroscopy and dynamic light scattering technique.
Detonation nanodiamonds (DNDs) have emerged as promising candidates for a variety of biomedical applications, thanks to different physicochemical and biological properties, such as small size and reactive surfaces. In this study, we propose carbon dot decorated single digit (4-5 nm diameter) primary particles of detonation nanodiamond as promising fluorescent probes. Due to their intrinsic fluorescence originating from tiny (1-2 atomic layer thickness) carbonaceous structures on their surfaces, they exhibit brightness suitable for in vitro imaging.
View Article and Find Full Text PDFNanoparticles are ubiquitous in nature and are increasingly important for technology. They are subject to bombardment by ionizing radiation in a diverse range of environments. In particular, nanodiamonds represent a variety of nanoparticles of significant fundamental and applied interest.
View Article and Find Full Text PDFNanodiamond particles are widely recognized candidates for biomedical applications due to their excellent biocompatibility, bright photoluminescence based on color centers and outstanding photostability. Recently, more complex architectures with a nanodiamond core and an external shell or nanostructure which provides synergistic benefits have been developed, and their feasibility for biomedical applications has been demonstrated. This review is aimed at summarizing recent achievements in the fabrication and functional demonstrations of nanodiamond-based composite structures, along with critical considerations that should be taken into account in the design of such structures from a biomedical point of view.
View Article and Find Full Text PDFThe first application of the high-pressure-high-temperature (HPHT) technique for direct production of doped ultrasmall diamonds starting from a one-component organic precursor is reported. Heavily boron-doped diamond nanoparticles with a size below 10 nm are produced by HPHT treatment of 9-borabicyclo [3,3,1]nonane dimer molecules.
View Article and Find Full Text PDFRecently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes.
View Article and Find Full Text PDFThe principle possibility of extraction of fluorescence of nanoparticles in the presence of background autofluorescence of a biological environment using neural network algorithms is demonstrated. It is shown that the methods used allow detection of carbon nanoparticles fluorescence against the background of the autofluorescence of egg white with a sufficiently low concentration detection threshold (not more than 2 μg/ml for carbon dots 3 μg/ml and for nanodiamonds). It was also shown that the use of the input data compression can further improve the accuracy of solving the inverse problem by 1.
View Article and Find Full Text PDFDoping of carbon nanoparticles with impurity atoms is central to their application. However, doping has proven elusive for very small carbon nanoparticles because of their limited availability and a lack of fundamental understanding of impurity stability in such nanostructures. Here, we show that isolated diamond nanoparticles as small as 1.
View Article and Find Full Text PDFA multifunctional core-shell nanocomposite platform consisting of a photoluminescent nanodiamond (ND) core with uniform porous silica coatings is presented. This design intended for drug delivery applications allows simultaneous stable fluorescent imaging with high loading capacity of bioactive molecules. Despite irregularly shaped starting cores, well-dispersed and uniformly shaped nanocomposite particles can be produced.
View Article and Find Full Text PDFRecent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles.
View Article and Find Full Text PDFAn efficient method to investigate the microstructure and spatial distribution of nitrogen and nitrogen-vacancy (N-V) defects in detonation nanodiamond (DND) with primary particle sizes ranging from approximately 3 to 50 nm is presented. Detailed analysis reveals atomic nitrogen concentrations as high as 3 at% in 50% of diamond primary particles with sizes smaller than 6 nm. A non-uniform distribution of nitrogen within larger primary DND particles is also presented, indicating a preference for location within the defective central part or at twin boundaries.
View Article and Find Full Text PDFPure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported.
View Article and Find Full Text PDF