We have perturbed myosin nucleotide binding site with magnesium-, manganese-, or calcium-nucleotide complexes, using metal cation as a probe to examine the pathways of myosin ATPase in the presence of actin. We have used transient time-resolved FRET, myosin intrinsic fluorescence, fluorescence of pyrene labeled actin, combined with the steady state myosin ATPase activity measurements of previously characterized D.discoideum myosin construct A639C:K498C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2011
For many proteins, especially for molecular motors and other enzymes, the functional mechanisms remain unsolved due to a gap between static structural data and kinetics. We have filled this gap by detecting structure and kinetics simultaneously. This structural kinetics experiment is made possible by a new technique, (TR)(2)FRET (transient time-resolved FRET), which resolves protein structural states on the submillisecond timescale during the transient phase of a biochemical reaction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2009
We have used two complementary time-resolved spectroscopic techniques, dipolar electron-electron resonance and fluorescence resonance energy transfer to determine conformational changes in a single structural element of the myosin motor domain, the relay helix, before and after the recovery stroke. Two double-Cys mutants were labeled with optical probes or spin labels, and interprobe distances were determined. Both methods resolved two distinct structural states of myosin, corresponding to straight and bent conformations of the relay helix.
View Article and Find Full Text PDFWe have used time-resolved phosphorescence anisotropy (TPA) to probe rotational dynamics of the rabbit skeletal sarcoplasmic reticulum Ca-ATPase (SERCA), to test the hypothesis, generated from X-ray crystallography, that large-scale structural changes are induced by Ca in this system. Previous TPA studies on SERCA used primarily erythrosin 5'-isothiocyanate (ErITC), which binds to the nucleotide-binding domain and inactivates the enzyme. To investigate rotational dynamics of the active enzyme, we labeled SERCA with erythrosin 5'-iodoacetamide, which binds to the phosphorylation domain and has a minimal effect on the calcium-dependent ATPase activity.
View Article and Find Full Text PDFWe used fluorescence resonance energy transfer (FRET) to detect and quantitate the interaction of the sarcoplasmic reticulum Ca-ATPase (SERCA) with phospholamban (PLB) in membranes. PLB inhibits SERCA only at submicromolar Ca. It has been proposed that relief of inhibition at micromolar Ca is due to dissociation of the inhibitory complex.
View Article and Find Full Text PDF