J Biomed Opt
February 2018
Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ∼1.6 μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ∼20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation.
View Article and Find Full Text PDFObservation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis.
View Article and Find Full Text PDFMechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency.
View Article and Find Full Text PDFIn Part I of this study [1], good agreement between experimental measurements and results from Monte Carlo simulations were obtained for the spatial intensity distribution of a laser beam propagating within a turbid environment. In this second part, the validated Monte Carlo model is used to investigate spatial and temporal effects from distinct scattering orders on image formation. The contribution of ballistic photons and the first twelve scattering orders are analyzed individually by filtering the appropriate data from simulation results.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2009
Increasingly we are monitoring the distribution of oxygen through the microcirculation using optical techniques such as optical reflectance spectroscopy (ORS) and near-infrared spectroscopy. Mean blood oxygen saturation (S(mb)O(2)) and tissue oxygenation index measured by these two techniques, respectively, evoke a concept of the measurement of oxygen delivery to tissue. This study aims to establish whether S(mb)O(2) is an appropriate indicator of tissue oxygenation.
View Article and Find Full Text PDFA combination of selective fluorescent dyes has been developed for simultaneous quantitative measurements of several physicochemical parameters. The operating principle of the assay is similar to electronic nose and tongue systems, which combine nonspecific or semispecific elements for the determination of diverse analytes and chemometric techniques for multivariate data analysis. The analytical capability of the proposed mixture is engendered by changes in fluorescence signal in response to changes in environment such as pH, temperature, ionic strength, and presence of oxygen.
View Article and Find Full Text PDFWe investigate the scattering and multiple scattering of a typical laser beam (lambda = 800 nm) in the intermediate scattering regime. The turbid media used in this work are homogeneous solutions of monodisperse polystyrene spheres in distilled water. The two-dimensional distribution of light intensity is recorded experimentally, and calculated via Monte Carlo simulation for both forward and side scattering.
View Article and Find Full Text PDFSprays and other industrially relevant turbid media can be quantitatively characterized by light scattering. However, current optical diagnostic techniques generate errors in the intermediate scattering regime where the average number of light scattering is too great for the single scattering to be assumed, but too few for the diffusion approximation to be applied. Within this transitional single-to-multiple scattering regime, we consider a novel crossed source-detector geometry that allows the intensity of single scattering to be measured separately from the higher scattering orders.
View Article and Find Full Text PDFFluorescence diagnostic techniques are notable amongst many other optical methods because they offer high sensitivity and noninvasive measurement of tissue properties. However, a combination of multiple scattering and physical heterogeneity of biological tissues hampers interpretation of the fluorescence measurements. Analyses of the spatial distribution of endogenous and exogenous fluorophores excitation within tissues and their contribution to the detected signal localization are essential for many applications.
View Article and Find Full Text PDFWe have simulated diffuse reflectance spectra of skin by assuming a wavelength-independent scattering coefficient for the different skin tissues and using the known wavelength dependence of the absorption coefficient of oxy- and deoxyhaemoglobin and water. A stochastic Monte Carlo method is used to convert the wavelength-dependent absorption coefficient and wavelength-independent scattering coefficient into reflected intensity. The absorption properties of skin tissues in the visible and near-infrared spectral regions are estimated by taking into account the spatial distribution of blood vessels, water and melanin content within distinct anatomical layers.
View Article and Find Full Text PDF