Publications by authors named "Igor Tselniker"

In this work, we propose and experimentally demonstrate a novel low-complexity technique for fiber nonlinearity compensation. We achieved a transmission distance of 2818 km for a 32-GBaud dual-polarization 16QAM signal. For efficient implantation, and to facilitate integration with conventional digital signal processing (DSP) approaches, we independently compensate fiber nonlinearities after linear impairment equalization.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a novel sub-band multiplexed data architecture for chromatic dispersion (CD) mitigation. We have demonstrated 32 GBaud multi-sub-band (MSB) dual-polarization (DP) 16QAM transmission over 2400 km. Using this approach, the transmitted signal bandwidth is divided into multiple narrow-bandwidth sub-bands, each operating at a lower baud rate.

View Article and Find Full Text PDF

We experimentally demonstrate a novel digital signal processing (DSP) structure for reduced guard-interval (RGI) OFDM coherent optical systems. The proposed concept is based on digitally slicing optical channel bandwidth into multiple spectrally disjoint sub-bands which are then processed in parallel. Each low bandwidth sub-band has a smaller delay-spread compared to a full-band signal.

View Article and Find Full Text PDF

A self-coherent receiver capable of demultiplexing PolMUX-signals without an external polarization controller is presented. Training sequences are introduced to estimate the polarization rotation, and a decision feedback recursive algorithm mitigates the random walk of the recovered field. The concept is tested for a PolMUX-DQPSK modulation format where one polarization carries a normal DQPSK signal while the other polarization is encoded as a progressive phase-shift DQPSK signal.

View Article and Find Full Text PDF

Self-coherent detection with interferometric field reconstruction aims at retrieving the complex-valued optical field (amplitude and phase) by digitally processing delay interferometer (DI) measurements, in order to realize a differential direct detection receiver with capabilities akin to that of a fully coherent receiver with polarization multiplexing, albeit without requiring a local oscillator laser in the receiver. Here we introduce a novel digital recursive algorithm capable of accurately reconstructing the optical complex field (both amplitude and phase) solely from the quadrature DI outputs, eliminating the AM photo-detector branch. We analyze a key impairment namely the accumulation of errors and fluctuations in the reconstructed amplitude and phase due to ADC quantization noise, recirculating in the recursion.

View Article and Find Full Text PDF

This paper extends our prior coherent MSDD Carrier Recovery system from QPSK to QAM operation and also characterizes for the first time the Carrier Frequency Offset (CFO) mitigation capabilities of the novel MSDD for QAM systems. We introduce and numerically investigate the performance of an improved MSDD carrier recovery system (differing from the one disclosed in our MSDD for QPSK prior paper), automatically adapting to the channel statistics for optimal phase-noise mitigation. Remarkably, we do not require a separate structure to estimate and mitigate CFO, but the same adaptive structure originally intended for phase noise mitigation is shown to also automatically provide frequency offset estimation and recovery functionality.

View Article and Find Full Text PDF

The MSDD carrier phase estimation technique is derived here for optically coherent QPSK transmission, introducing the principle of operation while providing intuitive insight in terms of a multi-symbol extension of naïve delay-detection. We derive here for the first time Wiener-optimized and LMS-adapted versions of MSDD, introduce simplified hardware realizations, and evaluate complexity and numerical performance tradeoffs of this highly robust and low-complexity carrier phase recovery method. A multiplier-free carrier phase recovery version of the MSDD provides nearly optimal performance for linewidths up to ~0.

View Article and Find Full Text PDF