Publications by authors named "Igor Tokmakov"

The local interpolating moving least-squares (IMLS) method for constructing potential energy surfaces is investigated. The method retains the advantageous features of the IMLS approach in that the ab initio derivatives are not required and high degree polynomials can be used to provide accurate fits, while at the same time it is much more efficient than the standard IMLS approach because the least-squares solutions need to be calculated only once at the data points. Issues related to the implementation of the local IMLS method are investigated and the accuracy is assessed using HOOH as a test case.

View Article and Find Full Text PDF

Ab initio G2M calculations have been performed to investigate the potential energy surface for the reaction of C6H5 with O2. The reaction is shown to start with an exothermic barrierless addition of O2 to the radical site of C6H5 to produce phenylperoxy (1) and, possibly, 1,2-dioxaspiro[2.5]octadienyl (dioxiranyl, 8) radicals.

View Article and Find Full Text PDF

Electronic structure calculations have been performed to investigate the initial steps in the gas-phase decomposition of urea and urea nitrate. The most favorable decomposition pathway for an isolated urea molecule leads to HNCO and NH3. Gaseous urea nitrate formed by the association of urea and HNO3 has two isomeric forms, both of which are acid-base complexes stabilized by the hydrogen-bonding interactions involving the acidic proton of HNO3 and either the O or N atoms of urea, with binding energies (D0(o), calculated at the G2M level with BSSE correction) of 13.

View Article and Find Full Text PDF

In standard applications of interpolating moving least squares (IMLS) for fitting a potential-energy surface (PES), all available ab initio points are used. Because remote ab initio points negligibly influence IMLS accuracy and increase IMLS time-to-solution, we present two methods to locally restrict the number of points included in a particular fit. The fixed radius cutoff (FRC) method includes ab initio points within a hypersphere of fixed radius.

View Article and Find Full Text PDF

The kinetics for the gas-phase reaction of phenyl radical with propyne has been measured by cavity ring-down spectrometry (CRDS), and the mechanism and initial product branching have been elucidated with the help of quantum chemical calculations. Absolute rate constants measured by the CRDS technique can be expressed by the following Arrhenius equation: (k/cm(3) mol(-1) s(-1)): k(propyne)(T=301-428 K)=(3.68+/-0.

View Article and Find Full Text PDF