Polymeric materials play a vital role in high-voltage insulation, but their insulating properties can deteriorate over time, leading to insulation failures. The presence of voids resulting from manufacturing defects or external stresses can create a highly divergent field, further contributing to this issue. However, certain polymers, such as polyurethane (PU), possess self-healing properties that enable them to repair these voids and restore a uniform electric field distribution, thereby ensuring the reliability of the insulation.
View Article and Find Full Text PDFGas discharge and breakdown phenomena have become increasingly important for the development of an ever-growing number of applications. The need for compact and miniaturized systems within power, pulsed power, semiconductor, and power electronic industries has led to the imposing of significant operating electric field stresses on components, even within applications with low operating voltages. Consequently, the interest in gas discharge processes in sub-millimeter and microscale gaps has grown, as the understanding of their initiation and propagation is critical to the further optimization of these technologies.
View Article and Find Full Text PDFObjective: This study investigates possible advantages in pulsed over continuous 405-nm light-emitting diode (LED) light for bacterial inactivation and energy efficiency.
Background: Alternative nonantibiotic methods of disinfection and infection control have become of significant interest. Recent studies have demonstrated the application of systems using 405-nm LEDs for continuous disinfection of the clinical environment, and also for potential treatment of contaminated wounds.
The antimicrobial effects of 405 nm light have generated interest in its use as an emerging disinfection technology with potential food-related applications. The aim of this study was to assess the bactericidal efficacy of 405 nm light for inactivation of Escherichia coli and Listeria monocytogenes under sub-lethally stressed environmental conditions. Bacteria were exposed to 405 nm light from a light emitting diode (LED) array under various temperature, salt (NaCl) and acid conditions to determine if bacterial susceptibility to 405 nm light inactivation is affected when exposed under these conditions.
View Article and Find Full Text PDFAttachment of bacteria to surfaces and subsequent biofilm formation remains a major cause of cross-contamination capable of inducing both food-related illness and nosocomial infections. Resistance to many current disinfection technologies means facilitating their removal is often difficult. The aim of this study was to investigate the efficacy of 405 nm light for inactivation of bacterial attached as biofilms to glass and acrylic.
View Article and Find Full Text PDFPhotochem Photobiol
January 2013
The antimicrobial properties of light is an area of increasing interest. This study investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible light. Results demonstrate that exposure to wavelength region 400-450 nm, at sufficiently high dose levels (750 J cm(-2)), induced complete inactivation of a 5 log(10) population.
View Article and Find Full Text PDF