Publications by authors named "Igor Tchivilev"

Objective: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and its effect on smooth muscle cell (SMC) function and aortic compliance using mutant mouse models.

View Article and Find Full Text PDF

Background: Despite a concerted effort by many laboratories, the critical subunits that participate in vascular smooth muscle cell (VSMC) NADPH oxidase function have yet to be elucidated. Given the potential therapeutic importance of cell-specific inhibition of NADPH oxidase, we investigated the role of Nox activator 1 (NoxA1), a homolog of p67phox, in VSMC NADPH oxidase function and atherosclerosis.

Methods And Results: The presence of NoxA1 in mouse aortic VSMCs was confirmed by reverse-transcription polymerase chain reaction and sequencing.

View Article and Find Full Text PDF

The development of therapeutic strategies to inhibit reactive oxygen species (ROS)-mediated damage in blood vessels has been limited by a lack of specific targets for intervention. Targeting ROS-mediated events in the vessel wall is of interest, because ROS play important roles throughout atherogenesis. In early atherosclerosis, ROS stimulate vascular smooth muscle cell (VSMC) growth, whereas in late stages of lesion development, ROS induce VSMC apoptosis, causing atherosclerotic plaque instability.

View Article and Find Full Text PDF

Atherosclerosis, the primary cause of coronary artery disease (CAD), is a multifactorial disease, the molecular etiology of which involves interaction of many genes and environmental factors. Reactive oxygen species are integral to many cellular and biomolecular processes that are active in the transition of incipient fatty streaks into acute coronary syndromes. Animal models of atherosclerosis and correlative data from human studies support the oxidative stress hypothesis of atherosclerosis.

View Article and Find Full Text PDF

The transcription factor nuclear factor (NF)-kappaB controls the expression of genes involved in inflammation, cell proliferation, apoptosis, and differentiation. Impaired regulation of NF-kappaB has been associated with many diseases; thus, there is significant interest in therapeutic approaches based on modulation of this transcription factor. NF-kappaB activity is controlled by numerous signaling molecules, many of which are potentially to be identified.

View Article and Find Full Text PDF