Publications by authors named "Igor S Tupitsyn"

Article Synopsis
  • Precise calculations of the dynamics in the homogeneous electron gas are crucial for designing and understanding new materials.
  • A new diagrammatic Monte Carlo method is introduced to compute responses directly in the real frequency domain using Feynman diagrams, focusing on charge responses at moderate electron density.
  • The findings help in extracting the frequency dependence of the exchange-correlation kernel, which is essential for improving time-dependent density functional theory in material dynamics, analogous to how ground state energies benefit density functional theory.
View Article and Find Full Text PDF

We study how manifestations of strong electron-phonon interaction depend on the carrier concentration by solving the two-dimensional Holstein model for the spin-polarized fermions using an approximation free bold-line diagrammatic Monte Carlo method. We show that the strong electron-phonon interaction, obviously present at very small Fermion concentration, is masked by the Fermi blockade effects and Migdal's theorem to the extent that it manifests itself as moderate one at large carriers densities. Suppression of strong electron-phonon interaction fingerprints is in agreement with experimental observations in doped high temperature superconductors.

View Article and Find Full Text PDF

We develop and apply the diagrammatic Monte Carlo technique to address the problem of the stability of the Dirac liquid state (in a graphene-type system) against the strong long-range part of the Coulomb interaction. So far, all attempts to deal with this problem in the field-theoretical framework were limited either to perturbative or random phase approximation and functional renormalization group treatments, with diametrically opposite conclusions. Our calculations aim at the approximation-free solution with controlled accuracy by computing vertex corrections from higher-order skeleton diagrams and establishing the renormalization group flow of the effective Coulomb coupling constant.

View Article and Find Full Text PDF

Organic semiconductors are studied intensively for applications in electronics and optics, and even spin-based information technology, or spintronics. Fundamental quantities in spintronics are the population relaxation time (T1) and the phase memory time (T2): T1 measures the lifetime of a classical bit, in this case embodied by a spin oriented either parallel or antiparallel to an external magnetic field, and T2 measures the corresponding lifetime of a quantum bit, encoded in the phase of the quantum state. Here we establish that these times are surprisingly long for a common, low-cost and chemically modifiable organic semiconductor, the blue pigment copper phthalocyanine, in easily processed thin-film form of the type used for device fabrication.

View Article and Find Full Text PDF

Experiments involving phase coherent dynamics of networks of spins, such as echo experiments, will only work if decoherence can be suppressed. We show here, by analyzing the particular example of a crystalline network of Fe8 molecules, that most decoherence typically comes from pairwise interactions (particularly dipolar interactions) between the spins, which cause "correlated errors." However, at very low T these are strongly suppressed.

View Article and Find Full Text PDF