Publications by authors named "Igor Pusnik"

Current process of calibrating radiation thermometers, including thermal imagers, relies on measurement comparison with the temperature of a black body at a set distance. Over time, errors have been detected in calibrations of some radiation thermometers, which were correlated with moisture levels. In this study, effects of atmospheric air on thermal transmission were evaluated by the means of simulations using best available resources of the corresponding datasets.

View Article and Find Full Text PDF

Thermal imaging is used in various fields of industry and research to measure temperature and its possible differences. Since there is a lack of research and literature on palm temperatures and prevention of blisters on hands, our question was how palm temperature differs in human hands after different loads (Hang and Swing in Hang) for 30 s on a high bar. Thirty-eight students from the Faculty of Sport at the University of Ljubljana were measured with a high-quality thermal imaging camera.

View Article and Find Full Text PDF

In numerous applications, including current body temperature monitoring in viral pandemic management, thermal imaging cameras are used for quantitative measurements. These require determination of the measurement accuracy (error) and its traceability (measurement uncertainty). Within error estimation, the size-of-source effect (SSE) is an important error source.

View Article and Find Full Text PDF

This paper presents a temperature evaluation method by means of high-speed, visible light digital camera visualization and its application to the mineral wool production process. The proposed method adequately resolves the temperature-related requirements in mineral wool production and significantly improves the spatial and temporal resolution of measured temperature fields. Additionally, it is very cost effective in comparison with other non-contact temperature field measurement methods, such as infrared thermometry.

View Article and Find Full Text PDF

Infrared ear thermometers (IRETs) are extensively used for measuring the temperature of a human body. For accurate measurements with IRETs they have to be calibrated regularly with an appropriate and traceable calibration system. Such systems are neither widely available nor are there many competent (accredited) laboratories which can provide traceability for IRETs.

View Article and Find Full Text PDF

The paper describes the comparison method and analyses the results of comparison in terms of agreement between the blackbody of the National Physical Laboratory (NPL), United Kingdom and four different blackbody cavities of the Laboratory of Metrology and Quality (LMK), at the University of Ljubljana, Faculty of Electrical Engineering (FE), Slovenia. Three cavity shapes are suggested in different standards as suitable for calibration of infrared ear thermometers (IRETs), while one cavity shape was proposed by the LMK. The agreement between blackbody cavities was determined with the help of platinum resistance thermometers.

View Article and Find Full Text PDF

Medical diagnostics and clinical practice rely extensively on test and measurement instrumentation. It is therefore of paramount importance that test and measurement instrumentation provides reliable data of sufficient stability, within appropriate limits of accuracy. At the same time the intended purpose of a particular measuring instrument has to be taken into account.

View Article and Find Full Text PDF