Publications by authors named "Igor Podolak"

Understanding brain function relies on identifying spatiotemporal patterns in brain activity. In recent years, machine learning methods have been widely used to detect connections between regions of interest (ROIs) involved in cognitive functions, as measured by the fMRI technique. However, it's essential to match the type of learning method to the problem type, and extracting the information about the most important ROI connections might be challenging.

View Article and Find Full Text PDF

The prediction of molecular properties is a crucial aspect in drug discovery that can save a lot of money and time during the drug design process. The use of machine learning methods to predict molecular properties has become increasingly popular in recent years. Despite advancements in the field, several challenges remain that need to be addressed, like finding an optimal pre-training procedure to improve performance on small datasets, which are common in drug discovery.

View Article and Find Full Text PDF

The problem of reducing processing time of large deep learning models is a fundamental challenge in many real-world applications. Early exit methods strive towards this goal by attaching additional Internal Classifiers (ICs) to intermediate layers of a neural network. ICs can quickly return predictions for easy examples and, as a result, reduce the average inference time of the whole model.

View Article and Find Full Text PDF

Interpolating between points is a problem connected simultaneously with finding geodesics and study of generative models. In the case of geodesics, we search for the curves with the shortest length, while in the case of generative models, we typically apply linear interpolation in the latent space. However, this interpolation uses implicitly the fact that Gaussian is unimodal.

View Article and Find Full Text PDF

Despite the popularity of virtual screening (VS) of existing compound libraries, the search for new potential drug candidates also takes advantage of generative protocols, where new compound suggestions are enumerated using various algorithms. To increase the activity potency of generative approaches, they have recently been coupled with molecular docking, a leading methodology of structure-based drug design (SBDD). In this review, we summarize progress since docking-based generative models emerged.

View Article and Find Full Text PDF

Extracting reliable information from electroencephalogram (EEG) is difficult because the low signal-to-noise ratio and significant intersubject variability seriously hinder statistical analyses. However, recent advances in explainable machine learning open a new strategy to address this problem.The current study evaluates this approach using results from the classification and decoding of electrical brain activity associated with information retention.

View Article and Find Full Text PDF

Using a visual short-term memory task and employing a new methodological approach, we analyzed neural responses from the perspective of the conflict level and correctness/erroneous over a longer time window. Sixty-five participants performed the short-term memory task in the fMRI scanner. We explore neural spatio-temporal patterns of information processing in the context of correct or erroneous response and high or low level of cognitive conflict using classical fMRI analysis, surface-based cortical data, temporal analysis of interpolated mean activations, and machine learning classifiers.

View Article and Find Full Text PDF

Depicting a ligand-receptor complex via Interaction Fingerprints has been shown to be both a viable data visualization and an analysis tool. The spectrum of its applications ranges from simple visualization of the binding site through analysis of molecular dynamics runs, to the evaluation of the homology models and virtual screening. Here we present a novel tool derived from the Structural Interaction Fingerprints providing a detailed and unique insight into the interactions between receptor and specific regions of the ligand (grouped into pharmacophore features) in the form of a matrix, a 2D-SIFt descriptor.

View Article and Find Full Text PDF