Publications by authors named "Igor Paulussen"

Blood pressure (BP) surrogates, such as pulse transit time (PTT) or pulse arrival time (PAT), have been intensively explored with the goal of achieving cuffless, continuous, and accurate BP inference. In order to estimate BP, a one-point calibration strategy between PAT and BP is typically used. Recent research focuses on advanced calibration procedures exploiting the cuff inflation process to improve calibration robustness by active and controlled modulation of peripheral PAT, as measured via plethysmograph (PPG) and electrocardiogram (ECG) combination.

View Article and Find Full Text PDF

The blood pressure (BP) cuff can be used to modulate blood flow and propagation of pressure pulse along the artery. In our previous work, we researched methods to adapt cuff modulation techniques for pulse transit time vs. BP calibration and for measurement of other hemodynamic indices of potential interest to critical care, such as arterial compliance.

View Article and Find Full Text PDF

In standard critical care practice, cuff sphygmomanometry is widely used for intermittent blood pressure (BP) measurements. However, cuff devices offer ample possibility of modulating blood flow and pulse propagation along the artery. We explore underutilized arrangements of sensors involving cuff devices which could be of use in critical care to reveal additional information on compensatory mechanisms.

View Article and Find Full Text PDF

Clinicians strive to maintain normothermia, which requires measurement of core-body temperature and may necessitate active warming of patients. Monitoring temperature currently requires invasive probes. This work investigates a novel foam-based flexible sensor worn behind the ear for the measurement of core body temperature.

View Article and Find Full Text PDF

To non-invasively predict fluid responsiveness, respiration-induced pulse amplitude variation (PAV) in the photoplethysmographic (PPG) signal has been proposed as an alternative to pulse pressure variation (PPV) in the arterial blood pressure (ABP) signal. However, it is still unclear how the performance of the PPG-derived PAV is site-dependent during surgery. The aim of this study is to compare finger- and forehead-PPG derived PAV in their ability to approach the value and trend of ABP-derived PPV.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how arterial pulse pressure variation (PPV) algorithms predict fluid responsiveness during surgery, especially when blood pressure changes rapidly.* -
  • It records blood pressure data from 23 patients undergoing major abdominal surgery to assess different PPV algorithms.* -
  • Findings indicate that while all algorithms work well under stable conditions, additional processing steps enhance the reliability of PPV measurements throughout surgical procedures.*
View Article and Find Full Text PDF

Introduction: Reliable, non-invasive detection of return of spontaneous circulation (ROSC) with minimal interruptions to chest compressions would be valuable for high-quality cardiopulmonary resuscitation (CPR). We investigated the potential of photoplethysmography (PPG) to detect the presence of a spontaneous pulse during automated CPR in an animal study.

Methods: Twelve anesthetized pigs were instrumented to monitor circulatory and respiratory parameters.

View Article and Find Full Text PDF

Clinical observations suggest that the assumption of a linear relationship between chest compression pressure and cardiac output may be oversimplified. More complex behaviour may occur when the transmural pressure is large, changing the compliances and resistances in the intra-thoracic vasculature. A fundamental understanding of these compression induced phenomena is required for improving CPR.

View Article and Find Full Text PDF

Purpose: To evaluate, in a hospital setting, the influence of different, common mattresses, with and without a backboard, on chest movement during CPR.

Design And Setting: Sixty CPR sessions (140s each, 30:2, C:R ratio 1:1) were performed using a manikin on standard hospital mattresses, with or without a backboard in combination with variable weights. Sternum-to-spine compression distance was controlled (range 30-60mm) allowing evaluation of the underlying compliant surface on total hand travel.

View Article and Find Full Text PDF