Nucleic acid templated reactions are enabled by the hybridization of probe-reagent conjugates resulting in high effective reagent concentration and fast chemical transformation. We have developed a reaction that harnesses cellular microRNA (miRNA) to yield the cleavage of a linker releasing fluorogenic rhodamine in a live vertebrate. The reaction is based on the catalytic photoreduction of an azide by a ruthenium complex.
View Article and Find Full Text PDFThe sequence-specific fluorescence labeling of nucleic acids is a prerequisite for various methods including single-molecule Förster resonance energy transfer (smFRET) for the detailed study of nucleic acid folding and function. Such nucleic acid derivatives are commonly obtained by solid-phase methods; however, yields decrease rapidly with increasing length and restrict the practicability of this approach for long strands. Here, we report a new labeling strategy for the postsynthetic incorporation of a bioorthogonal group into single stranded regions of both DNA and RNA of unrestricted length.
View Article and Find Full Text PDFDNA lesions such as 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC) are ubiquitously present in genomes of different organisms and show increasing levels upon exposure to mutagenic substances or under conditions of chronic inflammations and infections. To facilitate investigations of the mutagenic properties and repair mechanisms of etheno-base adducts, access to oligonucleotides bearing these lesions at defined positions is of great advantage. In this study, we report a new synthetic strategy to sequence-specifically generate etheno-adducts in a single-stranded unmodified DNA sequence making use of a DNA-templated approach that positions the alkylating agent close in space to the respective target base.
View Article and Find Full Text PDF