Publications by authors named "Igor Nikovskiy"

The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation.

View Article and Find Full Text PDF

Two coordination polymers, Fe(L)(CHCOO)(CHCN)]•nCHCN and [Fe(L)AgNOBF•CHOH]•1.75nCHOH•nHO (L = 3,3'-(4-(4-cyanophenyl)pyridine-2,6-diyl)bis(1-(2,6-dichlorophenyl)-1H-pyrazol-5-olate)), were obtained via a PCET-assisted process that uses the hydroxy-pyrazolyl moiety of the ligand and the iron(II) ion as sources of proton and electron, respectively. Our attempts to produce heterometallic compounds under mild conditions of reactant diffusion resulted in the first coordination polymer of 2,6-bis(pyrazol-3-yl)pyridines to retain the core N(L)MN(L).

View Article and Find Full Text PDF

Parahydrogen-induced nuclear polarization offers a significant increase in the sensitivity of NMR spectroscopy to create new probes for medical diagnostics by magnetic resonance imaging. As precursors of the biocompatible hyperpolarized probes, unsaturated derivatives of phosphoric acid, propargyl and allyl phosphates, are proposed. The polarization transfer to H and P nuclei of the products of their hydrogenation by parahydrogen under the ALTADENA and PASADENA conditions, and by the PH-ECHO-INEPT+ pulse sequence of NMR spectroscopy, resulted in a very high signal amplification, which is among the largest for parahydrogen-induced nuclear polarization transfer to the P nucleus.

View Article and Find Full Text PDF

A new synthetic pathway is devised to selectively produce previously elusive heteroleptic iron(II) complexes of terpyridine and ,'-disubstituted bis(pyrazol-3-yl)pyridines that stabilize the opposite spin states of the metal ion. Such a combination of the ligands in a series of the heteroleptic complexes induces the spin-crossover (SCO) not experienced by the homoleptic complexes of these ligands or shifts it to lower/higher temperatures respective to the SCO-active homoleptic complex. The midpoint temperatures of the resulting SCO span from ca.

View Article and Find Full Text PDF

A recently introduced concept of reduced paramagnetic shifts (RPS) in NMR spectroscopy is applied here to a series of paramagnetic complexes with different metal ions, such as iron(II), iron(III) and cobalt(II), in different coordination environments of N-donor ligands, including a unique trigonal-prismatic geometry that is behind some record single-molecule magnet behaviours. A simple, almost visual analysis of the chemical shifts as a function of temperature, which is at the core of this approach, allows for a correct signal assignment and evaluation of the anisotropy of the magnetic susceptibility, the key indicator of a good single molecule magnet, that often cannot be done using traditional techniques rooted in quantum chemistry and NMR spectroscopy. The proposed approach thus emerged as a powerful alternative in deciphering the NMR spectra of paramagnetic compounds for applications in data processing and storage, magnetic resonance imaging and structural biology.

View Article and Find Full Text PDF

Here, we report a combined study of the effects of two chemical modifications to an ,'-disubstituted bis(pyrazol-3-yl)pyridine (3-bpp) and of different solvents on the spin-crossover (SCO) behavior in otherwise high-spin iron(II) complexes by solution NMR spectroscopy. The observed stabilization of the low-spin state by electron-withdrawing substituents in the two positions of the ligand that induce opposite electronic effects in SCO-active iron(II) complexes of isomeric bis(pyrazol-1-yl)pyridines (1-bpp) was previously hidden by NH functionalities in 3-bpp precluding the molecular design of SCO compounds with this family of ligands. With the recent SCO-assisting substituent design, the uncovered trends converged toward the first iron(II) complex of ,'-disubstituted 3-bpp to undergo an almost complete SCO centered at room temperature in a less polar solvent of a high hydrogen-bond acceptor ability.

View Article and Find Full Text PDF

Here we report new porous carbon materials obtained by 3D printing from photopolymer compositions with zinc- and nickel-based metal-organic frameworks, ZIF-8 and Ni-BTC, followed by high-temperature pyrolysis. The pyrolyzed materials that retain the shapes of complex objects contain pores, which were produced by boiling zinc and magnetic nickel particles. The two thus provided functionalities-large specific surface area and ferromagnetism-that pave the way towards creating heterogenous catalysts that can be easily removed from reaction mixtures in industrial catalytic processes.

View Article and Find Full Text PDF

Here we report the first successful attempt to identify spin-crossover compounds in solutions of metal complexes produced by mixing different ligands and an appropriate metal salt by variable-temperature nuclear magnetic resonance (NMR) spectroscopy. Screening the spin state of a cobalt(II) ion in a series of thus obtained homoleptic and heteroleptic compounds of terpyridines (terpy) and 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) by using this NMR-based approach, which only relies on the temperature behavior of chemical shifts, revealed the first cobalt(II) complexes with a 3-bpp ligand to undergo a thermally induced spin-crossover. A simple analysis of NMR spectra collected from mixtures of different compounds without their isolation or purification required by the current method of choice, the Evans technique, thus emerges as a powerful tool in a search for new spin-crossover compounds and their molecular design boosted by wide possibilities for chemical modifications in heteroleptic complexes.

View Article and Find Full Text PDF

The molecular design of spin-crossover complexes relies on controlling the spin state of a transition metal ion by proper chemical modifications of the ligands. Herein, the first N,N'-disubstituted 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) are reported that, against the common wisdom, induce a spin-crossover in otherwise high-spin iron(II) complexes by increasing the steric demand of a bulky substituent, an ortho-functionalized phenyl group. As N,N'-disubstituted 3-bpp complexes have no pendant NH groups that make their spin state extremely sensitive to the environment, the proposed ligand design, which may be applicable to isomeric 1-bpp or other families of popular bi-, tri- and higher denticity ligands, opens the way for their molecular design as spin-crossover compounds for future breakthrough applications.

View Article and Find Full Text PDF