The plasma membrane of filamentous fungi forms large-sized invaginations, which are either tubes or parietal vesicles. Vesicular macroinvaginations at the ultrastructural level correspond to classical lomasomes. There is an assumption that vesicular macroinvaginations/lomasomes may be involved in macrovesicular endocytosis.
View Article and Find Full Text PDFThe development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation.
View Article and Find Full Text PDFBackground Information: Two main systems regulate plasma membrane tension (PMT) and provide a close connection between the protoplast and the cell wall in fungi: turgor pressure and the actin cytoskeleton. These systems work together with the plasma membrane focal adhesion to the cell wall and their contribution to fungal cell organization and physiology has been partially studied. However, it remains controversial in model filamentous ascomycetes and oomycetes and even less investigated in filamentous basidiomycetes.
View Article and Find Full Text PDFNitrogen in sufficient quantities is strictly necessary for all living organisms. In this study, the ability of some xylotrophic basidiomycetes to grow extremely long on a solid growth medium full of carbon nutrition but lacking a nitrogen source in its composition was discovered. The nitrogen oligotrophy of wood-decaying fungi is associated with their adaptation to live in a wood substrate, which is also deficient in nitrogen content.
View Article and Find Full Text PDF