Publications by authors named "Igor Marin de Mas"

The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

Patient blood samples are invaluable in clinical omics databases, yet current methodologies often fail to fully uncover the molecular mechanisms driving patient pathology. While genome-scale metabolic models (GEMs) show promise in systems medicine by integrating various omics data, having only exometabolomic data remains a limiting factor. To address this gap, we introduce a comprehensive pipeline integrating GEMs with patient plasma metabolome.

View Article and Find Full Text PDF

Genome-scale metabolic models (GEMs) have emerged as a tool to understand human metabolism from a holistic perspective with high relevance in the study of many diseases and in the metabolic engineering of human cell lines. GEM building relies on either automated processes that lack manual refinement and result in inaccurate models or manual curation, which is a time-consuming process that limits the continuous update of reliable GEMs. Here, we present a novel algorithm-aided protocol that overcomes these limitations and facilitates the continuous updating of highly curated GEMs.

View Article and Find Full Text PDF

Although numerous studies support a dose-effect relationship between Endocrine disruptors (EDs) and the progression and malignancy of tumors, the impact of a chronic exposure to non-lethal concentrations of EDs in cancer remains unknown. More specifically, a number of studies have reported the impact of Aldrin on a variety of cancer types, including prostate cancer. In previous studies, we demonstrated the induction of the malignant phenotype in DU145 prostate cancer (PCa) cells after a chronic exposure to Aldrin (an ED).

View Article and Find Full Text PDF

In trauma patients, shock-induced endotheliopathy (SHINE) is associated with a poor prognosis. We have previously identified four metabolic phenotypes in a small cohort of trauma patients (N = 20) and displayed the intracellular metabolic profile of the endothelial cell by integrating quantified plasma metabolomic profiles into a genome-scale metabolic model (iEC-GEM). A retrospective observational study of 99 trauma patients admitted to a Level 1 Trauma Center.

View Article and Find Full Text PDF

Modelling higher plant growth is of strategic interest for modern agriculture as well as for the development of bioregenerative life support systems for space applications, where crop growth is expected to play an essential role. The capability of constraint-based metabolic models to cope the diel dynamics of plants growth is integrated into a multilevel modelling approach including mass and energy transfer and enzyme kinetics. Lactuca sativa is used as an exemplary crop to validate, with experimental data, the approach presented as well as to design a novel model-based predictive control strategy embedding metabolic information.

View Article and Find Full Text PDF

Purpose: Endotheliopathy of trauma (EoT), as defined by circulating levels of syndecan-1 ≥ 40 ng/mL, has been reported to be associated with significantly increased transfusion requirements and a doubled 30-day mortality. Increased shedding of the glycocalyx points toward the endothelial cell membrane composition as important for the clinical outcome being the rationale for this study.

Results: The plasma metabolome of 95 severely injured trauma patients was investigated by mass spectrometry, and patients with EoT vs.

View Article and Find Full Text PDF

The ever-increasing demand for biopharmaceuticals has created the need for improving the overall productivity of culture processes. One such operational concept that is considered is fed-batch operations as opposed to batch operations. However, optimal fed-batch operations require complete knowledge of the cell culture to optimize the culture conditions and the nutrients feeding.

View Article and Find Full Text PDF

Metabolic networks are regulated to ensure the dynamic adaptation of biochemical reaction fluxes to maintain cell homeostasis and optimal metabolic fitness in response to endogenous and exogenous perturbations. To this end, metabolism is tightly controlled by dynamic and intricate regulatory mechanisms involving allostery, enzyme abundance and post-translational modifications. The study of the molecular entities involved in these complex mechanisms has been boosted by the advent of high-throughput technologies.

View Article and Find Full Text PDF

Background: Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism. This integration is achieved through logical rules that describe the association between genes, proteins, and reactions (GPRs). However, current gene-to-reaction formulation lacks the stoichiometry describing the transcript copies necessary to generate an active catalytic unit, which limits our understanding of how genes modulate metabolism.

View Article and Find Full Text PDF

Mammalian cells are widely used to express genes for basic biology studies and biopharmaceuticals. Current methods for generation of engineered cell lines introduce high genomic and phenotypic diversity, which hamper studies of gene functions and discovery of novel cellular mechanisms. Here, we minimized clonal variation by integrating a landing pad for recombinase-mediated cassette exchange site-specifically into the genome of CHO cells using CRISPR and generated subclones expressing four different recombinant proteins.

View Article and Find Full Text PDF

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate.

View Article and Find Full Text PDF

Rhabdomyolysis is a disorder characterized by acute damage of the sarcolemma of the skeletal muscle leading to release of potentially toxic muscle cell components into the circulation, most notably creatine phosphokinase (CK) and myoglobulin, and is frequently accompanied by myoglobinuria. In the present work, we evaluated the toxicity of -phenylenediamine (PPD), a main component of hair dyes which is reported to induce rhabdomyolysis. We studied the metabolic effect of this compound with Wistar rats and with C2C12 muscle cells.

View Article and Find Full Text PDF

Motivation: Skeletal muscle dysfunction is a systemic effect in one-third of patients with chronic obstructive pulmonary disease (COPD), characterized by high reactive-oxygen-species (ROS) production and abnormal endurance training-induced adaptive changes. However, the role of ROS in COPD remains unclear, not least because of the lack of appropriate tools to study multifactorial diseases.

Results: We describe a discrete model-driven method combining mechanistic and probabilistic approaches to decipher the role of ROS on the activity state of skeletal muscle regulatory network, assessed before and after an 8-week endurance training program in COPD patients and healthy subjects.

View Article and Find Full Text PDF

In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial-mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e-CSCs) from non-CSCs expressing a stable EMT.

View Article and Find Full Text PDF

Metabolic processes are altered in cancer cells, which obtain advantages from this metabolic reprogramming in terms of energy production and synthesis of biomolecules that sustain their uncontrolled proliferation. Due to the conceptual progresses in the last decade, metabolic reprogramming was recently included as one of the new hallmarks of cancer. The advent of high-throughput technologies to amass an abundance of omic data, together with the development of new computational methods that allow the integration and analysis of omic data by using genome-scale reconstructions of human metabolism, have increased and accelerated the discovery and development of anticancer drugs and tumor-specific metabolic biomarkers.

View Article and Find Full Text PDF

The article addresses the strategic role of workforce preparation in the process of adoption of Systems Medicine as a driver of biomedical research in the new health paradigm. It reports on relevant initiatives, like CASyM, fostering Systems Medicine at EU level. The chapter focuses on the BioHealth Computing Program as a reference for multidisciplinary training of future systems-oriented researchers describing the productive interactions with the Synergy-COPD project.

View Article and Find Full Text PDF

Background And Hypothesis: Chronic Obstructive Pulmonary Disease (COPD) patients are characterized by heterogeneous clinical manifestations and patterns of disease progression. Two major factors that can be used to identify COPD subtypes are muscle dysfunction/wasting and co-morbidity patterns. We hypothesized that COPD heterogeneity is in part the result of complex interactions between several genes and pathways.

View Article and Find Full Text PDF

The activation of immune cells in response to a pathogen involves a succession of signaling events leading to gene and protein expression, which requires metabolic changes to match the energy demands. The metabolic profile associated with the MAPK cascade (ERK1/2, p38, and JNK) in macrophages was studied, and the effect of its inhibition on the specific metabolic pattern of LPS stimulation was characterized. A [1,2-[(13)C](2)]glucose tracer-based metabolomic approach was used to examine the metabolic flux distribution in these cells after MEK/ERK inhibition.

View Article and Find Full Text PDF

Background: Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution.

View Article and Find Full Text PDF

Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype-phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data.

View Article and Find Full Text PDF