The self-consistent relaxation theory is employed to describe the collective ion dynamics in strongly coupled Yukawa classical one-component plasmas. The theory is applied to equilibrium states corresponding to intermediate screening regimes with appropriate values of the structure and coupling parameters. The information about the structure (the radial distribution function and the static structure factor) and the thermodynamics of the system are sufficient to describe collective dynamics over a wide range of spatial scales, namely, from the extended hydrodynamic to the microscopic dynamics scale.
View Article and Find Full Text PDFA method for beam shaping based on fitting the power moments of the final beam intensity distribution and independent of the optical system particularities is suggested. It is shown how one can analytically calculate any moment of the final phase space distribution using the moments of the initial distribution and the optical system transfer map. Numerical tests carried out for a final focus system have demonstrated the usefulness of the approach developed here.
View Article and Find Full Text PDF