Mesoporous silica nanoparticles (MSNPs) are currently used in different fields like catalysis, nanomedicine, and conservation science, taking advantage of their high surface area. Here, we synthesized and functionalized mesoporous dendritic fibrous nanoparticles to realize a smart delivery system of protective agents for metals. Different MSNPs were obtained via the microemulsion method followed by a hydrothermal or refluxing treatment at different w/o ratios, times, and temperatures.
View Article and Find Full Text PDFAiming at the energy efficient use and valorization of carbon dioxide in the framework of decarbonization studies and hydrogen research, a novel dielectric barrier discharge (DBD) reactor has been designed, constructed and developed. This test rig with water cooled electrodes is capable of a plasma power tunable in a wide range from 20W to 2 kW per unit. The reactor was designed to be ready for catalysts and membrane integration aiming at a broad range plasma conditions and processes, including low to moderate high pressures (0.
View Article and Find Full Text PDFNi/ZrO catalysts, active and selective for the catalytic partial oxidation of methane to syngas (CH-CPO), were prepared by the dry impregnation of zirconium oxyhydroxide (Z) or monoclinic ZrO (Z), calcination at 1173 K and activation by different procedures: oxidation-reduction () or direct reduction (). The characterization included XRD, FESEM, in situ FTIR and Raman spectroscopies, TPR, and specific surface area measurements. Catalytic activity experiments were carried out in a flow apparatus with a mixture of CH:O = 2:1 in a short contact time.
View Article and Find Full Text PDFChlorinated solvents are extensively used in many activities and hence in the past decades impacted a large number of sites. The presence of these contaminants in groundwater is challenging particularly for the management of the vapor intrusion pathway. In this work we examine the potential feasibility of using horizontal permeable reactive barriers (HPRBs) placed in the unsaturated zone to treat chlorinated solvent vapors emitted from groundwater.
View Article and Find Full Text PDFThe synthesis, characterization and assessment of the antibacterial properties of hydrophilic silver nanoparticles (AgNPs) were investigated with the aim to probe their suitability for innovative applications in the field of nanobiotechnology. First, silver nanoparticles were synthetized and functionalized with two capping agents, namely 3-mercapto-1-propansulfonate (3MPS) and 1-β-thio-d-glucose (TG). The investigation of the structural and electronic properties of the nano-systems was carried out by means of X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS).
View Article and Find Full Text PDF