The objective of this study was observation of the adhesive interface on original tooth samples, as well as their epoxy replicas, under SEM. A light-cure flowable composite was incrementally placed and light-polymerized in previously prepared cylindrical dentinal cavities on the buccal surfaces of extracted human third molars. After finishing procedures, impressions of the composite/dentin margin were made using polyvinylsiloxane in order to obtain accurate epoxy replicas for SEM analysis.
View Article and Find Full Text PDFObjective: In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties.
Methods: Isothermal experimental study was conducted on a rheometer with parallel plates.
Objective: The aim of this study is to develop fractional derivative models for the assessment of viscoelastic properties related to handling characteristics of dental resin composites belonging to two classes: flowable (Revolution Formula 2 and Filtek Ultimate) and posterior "bulk-fill" flowable base (Smart Dentin Replace).
Methods: Rheological measurements on all materials tested in this study were performed using dynamic oscillatory rheometer at temperature of 23°C. A parallel plates module with a diameter of 20mm was used to measure the properties of the resin composites tested.
Objectives: To reduce the effect of stresses due to volumetric shrinkage the authors propose an incremental technique for placing composite restorations.
Methods: The goal of the method is to reduce the volume of the resin that is polymerized and eliminate a stress singular point in the resin that is positioned at the geometric center of the cavity. This is achieved by a two step type incremental technique.