Publications by authors named "Igor Kvetnoy"

This article reviews the contemporary understanding of the functional role of connexins in intercellular communications, their involvement in maintaining cellular and tissue homeostasis, and in aging-associated respiratory disease pathogenesis. Connexins are discussed as potential therapeutic targets. The review particularly focuses on the involvement of gap junction connexins and hemichannels in the transfer of calcium ions, metabolite molecules, ATP, and mitochondria through the cell membrane.

View Article and Find Full Text PDF

Cellular aging is considered as one of the main factors implicated in female infertility. We evaluated the expression of senescence-associated secretory phenotype (SASP) markers and additional molecular factors in an in vitro model of cellular aging. We induced genotoxic stress (UVB/UVA ray irradiation) in primary human endometrial cells obtained from female subjects of young reproductive age (<35 years of age).

View Article and Find Full Text PDF

Objective: Normal circadian rhythms are essential to the repair mechanisms of oxidative stress implicated in skin aging. Given reports that hyaluronic acid (HA) homeostasis exhibits a different profile in chronological skin aging, as compared to environmental or extrinsic aging, an improved understanding of the way HA interacts with its surroundings, and the impact of HA injectables in replacing lost HA and encouraging rejuvenation, is of key benefit to skin aging treatments. The objectives of these current studies were twofold.

View Article and Find Full Text PDF

Much attention has been recently drawn to studying melatonin - a hormone whose synthesis was first found in the epiphysis (pineal gland). This interest can be due to discovering the role of melatonin in numerous physiological processes. It was the discovery of melatonin synthesis in endocrine organs (pineal gland), neural structures (Purkinje cells in the cerebellum, retinal photoreceptors), and immunocompetent cells (T lymphocytes, NK cells, mast cells) that triggered the evolution of new approaches to the unifield signal regulation of homeostasis, which, at the turn of the 21st century, lead to the creation of a new integral biomedical discipline - neuroimmunoendocrinology.

View Article and Find Full Text PDF

Introduction: Skin aging is a natural process that cannot be stopped. However, there are many ways to help attenuate premature aging of the skin and reduce the signs that have already appeared. One of them is the subcutaneous administration of preparations containing a combination of hyaluronic acid, active amino acids, and peptides providing an anti-aging clinical effect.

View Article and Find Full Text PDF

Sudden infant death syndrome (SIDS) is one of the primary causes of death of infants in the first year of life. According to the WHO's data, the global infant mortality rate is 0.64-2 per 1,000 live-born children.

View Article and Find Full Text PDF

Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos.

View Article and Find Full Text PDF

Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders.

View Article and Find Full Text PDF

The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented.

View Article and Find Full Text PDF

Melatonin (MT) and sirtuins (SIRT) are geroprotective molecules that hold back the aging process and the development of age-related diseases, including cardiovascular pathologies. Buccal epithelium (BE) sampling is a non-invasive procedure, yielding highly informative material for evaluating the expression of genes and proteins as well as the synthesis of molecules. Among these, MT and SIRTs are valuable markers of the aging process and age-related pathologies.

View Article and Find Full Text PDF

Aging is a complex biological process, a major aspect of which is the accumulation of somatic changes throughout life. Cellular senescence is a condition in which cells undergo an irreversible cell cycle arrest in response to various cellular stresses. Once the cells begin to senesce, they become more resistant to any mutagens, including oncogenic factors.

View Article and Find Full Text PDF

There is a growing awareness that pregnancy can set the foundations for an array of diverse medical conditions in the offspring, including obesity. A wide assortment of factors, including genetic, epigenetic, lifestyle, and diet can influence foetal outcomes. This article reviews the role of melatonin in the prenatal modulation of offspring obesity.

View Article and Find Full Text PDF

Structural and functional alterations of mitochondria are intimately linked to a wide array of medical conditions. Many factors are involved in the regulation of mitochondrial function, including cytokines, chaperones, chemokines, neurosteroids, and ubiquitins. The role of diffusely located cells of the neuroendocrine system, including biogenic amines and peptide hormones, in the management of mitochondrial function, as well as the role of altered mitochondrial function in the regulation of these cells and system, is an area of intense investigation.

View Article and Find Full Text PDF

Introduction: plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously.

View Article and Find Full Text PDF

Background: Biomimetic peptides are synthetic compounds that are identical to amino acid sequence synthesized by an organism and can interact with growth factor receptors and provide antiaging clinical effects.

Purpose: The purpose of this study was to investigate the effects of biomimetic peptides on the repair processes in the dermis using a model of cell cultures and in vivo.

Patients And Methods: Five female volunteers were subjected to the injection of biomimetic peptides 1 month prior to the abdominoplasty procedure.

View Article and Find Full Text PDF

Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland.

View Article and Find Full Text PDF

Lymphocyte subsets are major cellular components of the adaptive immune response and in most cases show 24-h (circadian) variations in health. In order to determine overall levels and circadian characteristics of cytotoxic natural killer (NK) and T and B lymphocyte subsets, blood samples were collected every 4 h for 24 h from eleven male controls (C) without neoplastic disease and nine men with untreated non-small cell lung cancer (NSCLC) and analyzed for 3 hormones (melatonin, cortisol, and interleukin 2 [IL2]) and for 11 lymphocyte subpopulations classified by cell surface clusters of differentiation (CD) and antigen receptors. Circadian rhythmicity for each variable was evaluated by ANOVA and 24 h cosine fitting and groups compared.

View Article and Find Full Text PDF

Background: Any quantity varying in the spatial-temporal dimension may be considered as a signal. Human lymphocyte cell surface molecules and subsets present circadian variation and this variation may represent a kind of signalling in the neuroendocrine-immune system. We have analyzed the dynamics of variation of specific lymphocyte subsets in healthy humans.

View Article and Find Full Text PDF

Objectives: The immunocytochemical study of the localization of hormones in thymic cells has been performed to clarify possible correlations of their expression with proliferative activity of thymocytes.

Methods: We used commercial antibodies to serotonin, melatonin, somatostatin, glucagon, gastrin, beta-endorphin and histamine, and ABP or BSP kits for visualization of reaction. Computer image analysis was used to find correlations between hormone production and proliferative activity of thymocytes.

View Article and Find Full Text PDF

During the last decade, attention was concentrated on melatonin -- one of the hormones of the diffuse neuroendocrine system, which has been considered only as a hormone of the pineal gland, for many years. Currently, melatonin has been identified not only in the pineal gland, but also in extrapineal tissues -- retina, harderian gland, gut mucosa, cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, ovary, carotid body, placenta and endometrium as well as in non-neuroendocrine cells like mast cells, natural killer cells, eosinophilic leukocytes, platelets and endothelial cells. The above list of the cells storing melatonin indicates that melatonin has a unique position among the hormones of the diffuse neuroendocrine system, which is present in practically all organ systems.

View Article and Find Full Text PDF

Melatonin, a pineal hormone, because of its wide activity spectrum, is a subject of much current interest for biologists and physicians. It has been demonstrated that pineal gland is not an exclusive source of melatonin synthesis. Melatonin synthesis has been found in different sites of the organism, and a major source of extrapineal melatonin is the gastrointestinal tract.

View Article and Find Full Text PDF

OBJECTIVES: Taking into account the hypothesis that Alzheimer's disease (AD) might be a systemic disease that affects several tissues in the body, the aim of this study was to try to detect the expression of tau-protein in human peripheral blood lymphocytes (PBL) in patients with AD. MATERIAL AND METHODS: Blood samples were obtained from patients with AD (n=16, age 67-98) and from volunteers without psychoneurological pathology (n=10, age 65-78). PBL were isolated on Ficoll-Paque gradient centrifugation.

View Article and Find Full Text PDF

Structural and functional alterations of mitochondria have been shown to be responsible for a wide variety of clinical disorders that are referred to as "mitochondrial diseases." It is now obvious that many factors are involved in transport of mitochondrial proteins including cytokines, chaperones, chemokines, neurosteroids, ubiquitin and many others. At the same time the participation and the role of biogenic amines and peptide hormones (which are produced by the diffuse neuroendocrine system cells located in different organs) in endogenous mechanisms of mitochondrial diseases are still unknown.

View Article and Find Full Text PDF