The cardiac action potential (AP) is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively). These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC) coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 μm diameter) extracellular electrodes.
View Article and Find Full Text PDFGyörke et al. discuss the role of sarcoplasmic reticulum Ca in cardiac refractoriness and pathological implications.
View Article and Find Full Text PDFAlthough the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814.
View Article and Find Full Text PDFTwo types of muscle fibre action potentials (APs) were recorded using narrow-tipped extracellular pipettes in isolated sartorius muscles of frog, Rana temporaria. The waveform of type 1 responses (T1 AP, 75% of recordings) was biphasic, 'positive–negative.' The type 2 signals were tri-phasic, 'positive–negative–positive' (T2 AP, 18%).
View Article and Find Full Text PDF