Silicon carbide (SiC) is a wide-band gap semiconductor that exceeds other semiconducting materials (except diamond) in electrical, mechanical, chemical, and radiation stability. In this paper, we report a novel approach to fabrication of SiC nano films on a Si substrate, which is based on the endotaxial growth of a SiC crystalline phase in a graphite-like carbon (GLC) matrix. GLC films were formed by carbonization of rigid rod polyimide (PI) Langmuir-Blodgett (LB) films on a Si substrate at 1000 °C in vacuum.
View Article and Find Full Text PDFAlGaAsSb and AlGaAs films as thick as 1 μm with Al content as high as 60% were successfully grown by low-temperature (200 °C) MBE. To overcome the well-known problem of growth disruption due to a high aluminum content and a low growth temperature, we applied intermittent growth with the temperature elevation to smooth out the emerging roughness of the growth front. Post-growth annealing of the obtained material allowed us to form a developed system of As or AsSb nanoinclusions, which occupy 0.
View Article and Find Full Text PDFHDPE-based nanocomposite fibers have been extruded from a melt and drawn up to draw ratio DR = 8. Two kinds of carbon nanodiscs (original ones and those exposed to additional annealing) have been used as fillers. Obtained nanocomposite fibers have been investigated with the help of different experimental methods: rheology, SEM and WAXS.
View Article and Find Full Text PDFThe anisotropic crystallite sizes in high-performance LiFePO powders were measured by XRD and compared with the particle sizes found by TEM image analysis. Lognormal particle size distribution functions were determined for all three main crystallographic axes. A procedure was developed to determine the fraction of the composite particles which consists of several crystallites and contains small- and large-angle boundaries.
View Article and Find Full Text PDFThe fibers based on thermoplastic partially crystalline polyetherimide R-BAPB modified by vapor grown carbon nanofibers (VGCF) were prepared by melt extrusion, exposed to orientational drawing, and crystallized. All of the samples were examined by scanning electron microscopy, X-ray scattering, and differential scanning calorimetry to study how the carbon nanofiller influences on the internal structure and crystallization behavior of the obtained R-BAPB fibers. The mechanical properties of the composite R-BAPB fibers were also determined.
View Article and Find Full Text PDFNanocomposite fibers based on heat-resistant amorphous polyetherimide (PEI) were prepared by twin screw melt micro-extrusion. Vapor-grown carbon nanofibers (VGCFs) and single-wall carbon nanotubes (SWCNTs) were used as fillers which helped to achieve enhanced mechanical properties. The structure and mechanical properties of such nanocomposite fibers were studied.
View Article and Find Full Text PDFAbstract: To focus on the influence of the intermetallic compound-oxide interface of Pd-based intermetallic phases in methanol steam reforming (MSR), a co-precipitation pathway has been followed to prepare and subsequently structurally and catalytically characterize a set of nanoparticulate GaO- and InO-supported GaPd and InPd catalysts, respectively. To study the possible promoting effect of InO, an InO-doped GaO-supported GaPd catalyst has also been examined. While, upon reduction, the same intermetallic compounds are formed, the structure of especially the GaO support is strikingly different: rhombohedral and spinel-like GaO phases, as well as hexagonal GaInO and rhombohedral InO phases are observed locally on the materials prior to methanol steam reforming by high-resolution transmission electron microscopy.
View Article and Find Full Text PDFElectrical conductivity, surface tension and viscosity of chitosan-based composite nanofibers are reported. 20 wt.% of chitin nanofibrils introduced into a chitosan solution leads to increase in viscosity of the mixture; the effect of shear rate becomes more pronounced.
View Article and Find Full Text PDFWe report a new type of metamaterial comprising a highly ordered 3D network of 3-7 nm lead sulfide quantum dots self-assembled in an organic matrix formed by amphiphilic ligands (oleic acid molecules). The obtained 3D superstructures possess an orthorhombic lattice with the distance between the nanocrystals as large as 10-40 nm. Analysis of self-assembly and destruction of the superstructures in time performed by a SAXS technique shows that their morphology depends on the quantity of amphiphilic ligands and width of the quantum dot size and its distribution.
View Article and Find Full Text PDFDifferent surface sites of solid catalysts are usually quantified by dedicated chemisorption techniques from the adsorption capacity of probe molecules, assuming they specifically react with unique sites. In case of methanol synthesis catalysts, the Cu surface area is one of the crucial parameters in catalyst design and was for over 25 years commonly determined using diluted N2O. To disentangle the influence of the catalyst components, different model catalysts were prepared and characterized using N2O, temperature programmed desorption of H2, and kinetic experiments.
View Article and Find Full Text PDFBiocompatible and bioresorbable composite fibers consisting of chitosan filled with anisotropic chitin nanofibrils with the length of 600-800 nm and cross section of about 11-12 nm as revealed by SEM and XRD were prepared by coagulation. Both chitin and chitosan components of the composite fibers displayed preferred orientations. Orientation of chitosan molecules induced by chitin nanocrystallites was confirmed by molecular modeling.
View Article and Find Full Text PDFA Cu-based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite-like precursor, which was prepared by co-precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2013
A pure ZnO sample and a sample containing 3 mol% Al were prepared by (co)-precipitation as model materials for the oxidic support phase in Cu/ZnO/Al(2)O(3) methanol synthesis catalysts. The samples were characterized with respect to their crystal, defect and micro-structure using various methods (XRD, TEM, XPS, UV-vis spectroscopy, EPR, NMR). It was found that a significant fraction of the Al is incorporated into the ZnO lattice and enhances the defect chemistry of the material.
View Article and Find Full Text PDFOne of the main stumbling blocks in developing rational design strategies for heterogeneous catalysis is that the complexity of the catalysts impairs efforts to characterize their active sites. We show how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al(2)O(3) methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations. The active site consists of Cu steps decorated with Zn atoms, all stabilized by a series of well-defined bulk defects and surface species that need to be present jointly for the system to work.
View Article and Find Full Text PDFNanostructured Cu(x)Zn(1-x)Al(2)O(4) with a Cu:Zn ratio of ¼:¾ has been prepared by a microwave-assisted hydrothermal synthesis at 150 °C and used as a precursor for Cu/ZnO/Al(2)O(3)-based catalysts. The spinel nanoparticles exhibit an average size of approximately 5 nm and a high specific surface area (above 250 m(2) g(-1)). Cu nanoparticles of an average size of 3.
View Article and Find Full Text PDFHigh-performance Cu/ZnO/(Al(2)O(3)) methanol synthesis catalysts are conventionally prepared by co-precipitation from nitrate solutions and subsequent thermal treatment. A new synthesis route is presented, which is based on similar preparation steps and leads to active catalysts, but avoids nitrate contaminated waste water.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2007
A technique of contact angle measurement was applied to the nano-scale oxide-supported metal particles. For Cu supported on ZnO and ZrO2 the angles were found to increase and the work of adhesion to decrease with increasing particle size. Such a trend is interpreted as an effect of negative contact line tension of 2.
View Article and Find Full Text PDF