One of the key factors in the pathogenesis of diabetes and its complications is oxidative stress. To inhibit this process, antioxidants may be helpful. Herein, we focused on the protective properties of taxifolin spheroidal form (TS) in the streptozotocin rat model of diabetes mellitus.
View Article and Find Full Text PDFOptically active polymers are of great interest as materials for dense enantioselective membranes, as well as chiral stationary phases for gas and liquid chromatography. Combining the versatility of norbornene chemistry and the advantages of chiral natural terpenes in one molecule will open up a facile route toward the synthesis of diverse optically active polymers. Herein, we prepared a set of new chiral monomers from -5-norbornene-2,3-dicarboxylic anhydride and chiral alcohols of various natures.
View Article and Find Full Text PDFDihydroquercetin (DHQ) is a promising antioxidant for medical applications. The poor water solubility of this flavanonol at ambient conditions inhibits its implementation in clinical practice as an injectable dosage form. Thus, increasing water solubility is a critical step toward solving this problem.
View Article and Find Full Text PDFA large amount of the current literature dedicated to solid states of active pharmaceutical ingredients (APIs) pays special attention to polymorphism of flavonoids. Taxifolin (also known as dihydroquercetin) is an example of a typical flavonoid. Some new forms of taxifolin have been reported previously, however it is still unclear whether they represent polymorphic modifications.
View Article and Find Full Text PDFThis report explores the antioxidant interaction of combinations of flavonoid-glutathione with different ratios. Two different 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS)-based approaches were applied for the elucidation of the antioxidant capacity of the combinations. Despite using the same radical, the two approaches employ different free radical inflow systems: An instant, great excess of radicals in the end-point decolorization assay, and a steady inflow of radicals in the lag-time assay.
View Article and Find Full Text PDFThe 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-based assays are among the most abundant antioxidant capacity assays, together with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-based assays according to the Scopus citation rates. The main objective of this review was to elucidate the reaction pathways that underlie the ABTS/potassium persulfate decolorization assay of antioxidant capacity. Comparative analysis of the literature data showed that there are two principal reaction pathways.
View Article and Find Full Text PDF